

RECEIVED

MAR 23 2023

BAQ PERMITTING

New-Indy Catawba LLC P.O. Box 7 5300 Cureton Ferry Road Catawba, SC 29704 T 803-981-8000 New-indycb.com

March 23, 2023

Ms. Katharine Buckner South Carolina Department of Health and Environmental Control Bureau of Air Quality - Air Permitting Division 2600 Bull Street Columbia, South Carolina 29201

Re: New-Indy Catawba LLC Consent Order to Correct Undesirable Levels of Air Contaminants Construction Permit Application

Ms. Buckner,

New-Indy Catawba LLC (New-Indy Catawba) operates a pulp and paper mill located in Catawba, South Carolina (Mill) and currently operates under Title V Operating Permit No. TV-2440-0005 (Title V Operating Permit or TV-2440-0005).

New-Indy Catawba has prepared this construction permit application as required by the South Carolina Department of Health and Environmental Control (SCDHEC) Consent Order to Correct Undesirable Levels of Air Contaminants, signed November 23, 2022 (Consent Order).

The attached document represents the construction permit application for this Project (Application). Appendix A of the application contains the required completed SCDHEC construction permit application forms. Appendix B of the application provides Project-related emissions calculations and supporting information. The Project-related emissions information has been refined since the previous submittal of the draft calculations on March 15, 2023. Comments received from SCDHEC regarding the Project-related emissions submitted on March 15 will be addressed by March 31, 2023. Appendix C of the application includes a description of air dispersion modeling performed for SCDHEC toxic air pollutants. The supporting air dispersion modeling files will be made available to the SCDHEC Air Modeling Section in electronic format.

If you have any additional questions regarding the attached construction permit application, please contact Bob Tourville at (803) 981 – 8009 or by e-mail at bob.tourville@new-indycb.com.

Sincerely,

Charles Cleveland Technical Manager

attachment

cc: Sheryl Watkins, P.E. - ALL4 Steven Moore - ALL4 Environmental File 200-air-205-air_permits

New Condensate Stripper

CONSTRUCTION PERMIT APPLICATION

NEW-INDY CATAWBA LLC – CATAWBA, SC MILL

MARCH 2023

Submitted by:

New-Indy Catawba LLC – Catawba, SC Mill 5300 Cureton Ferry Road Catawba, SC 29704

Submitted to:

SC Department of Health and Environmental Control Bureau of Air Quality – Division of Air Permitting 2600 Bull Street Columbia, SC 29201

TABLE OF CONTENTS

Section Name

Page Number

8

1.		INTR	ODUCTION AND APPLICATION OVERVIEW							
2.		PROC	CESS AND PROJECT DESCRIPTION							
3.		REGU	ULATORY REVIEW							
	3.1	Federal Air Quality Regulations								
		3.1.1	Standards of Performance for New Stationary Sources							
		3.1.2	National Emission Standards for Hazardous Air Pollutants	3-3						
		3.1.3	New Source Review	3-6						
		3.1.4	Compliance Assurance Monitoring							
		3.1.5	Requirements for Preparation, Adoption, and Submittal of Implementation Plans	3-7						
		3.1.6	Title V Operating Permits							
	3.2	South	Carolina Air Quality Regulations							
		3.2.1	Regulation 61-62.1: Section II, Permit Requirements							
		3.2.2	Regulation 61-62.5: Air Pollution Control Standards							
		3.2.3	Regulation 61-62.60: South Carolina Designated Facility Plan and New Source Performance	ormance						
			Standard	3-26						
		3.2.4	Regulation 61-62.61 and 61-62.62: National Emission Standards for Hazardous Air I	Pollutants 3-26						
		3.2.5	Regulation 61-62.70 – Title V Operating Permit Program							
	3.3	Provisi	ons of the SCDHEC Consent Order and EPA Consent decree	3-26						
		3.3.1	November 23, 2022 SCDHEC Consent Order	3-26						
		3.3.2	November 16, 2022 EPA Consent Decree	3-28						

LIST OF FIGURES

Figure 2-1 Simplified Mill Flow Diagram	2-3
Figure 2-2 Stripper Operating Scenarios	2.5
Figure 2-2 Stripper Operating Scenarios	

LIST OF TABLES

Table 3-1	Stripper Operating Scenarios
Table 3-2	New Stripper System Operating Scenarios
Table 3-3	Summary of PSD Applicability for the Project (tpy)3-24

LIST OF APPENDICES

- Appendix A Permit Application Forms
- Appendix B Emissions Calculations
- Appendix C Air Dispersion Modeling Documentation

1. INTRODUCTION AND APPLICATION OVERVIEW

New-Indy Catawba LLC (New-Indy Catawba) operates a pulp and paper mill located in Catawba, South Carolina (Mill or the Mill) and currently operates under Title V Operating Permit No. TV-2440-005 (TVOP or TV-2440-0005), effective on July 1, 2019.

New-Indy Catawba has prepared this construction permit application as required by the Consent Order to Correct Undesirable Levels of Air Contaminants ("Consent Order"), issued on November 23, 2022, by the South Carolina Department of Health and Environmental Control (SCDHEC)¹. For compliance with the provisions of the Consent Order, New-Indy Catawba is proposing a modification to their current foul condensate treatment system (condensate treatment system) to install a new foul condensate stripper (new steam stripper) and demote the existing steam stripper [existing steam stripper (ID 9801)] strictly to backup operation during periods of downtime experienced by the new steam stripper (Project). The Project also includes the installation of a stripper feed tank, methanol storage tank, and hot water tank to serve the new steam stripper. The stripper feed tank and methanol storage tank will be controlled in the LVHC system. The hot water tank is not expected to be a source of emissions. The Project will also satisfy the requirements of Item I.a. of Appendix A of Consent Decree Civil No. 0:21-cv-02053-SAL, United States of America v. New-Indy Catawba, LLC, dated November 16, 2022 (EPA Consent Decree). This document represents the construction permit application for this Project (Application).

¹ The November 23, 2022, Consent Order amends and replaces the Order to Correct Undesirable Level of Air Contaminants issued by SCDHEC on May 7, 2021.

NEWOINDY

2. PROCESS AND PROJECT DESCRIPTION

New-Indy Catawba is comprised of seven distinct process areas that include the following: the woodyard area, the kraft pulp mill area, the paper mill area, the chemical recovery area, the utilities area, the waste treatment area, and a miscellaneous area. A simplified process flow diagram for these process areas is included as Figure 2-1. A description of the process areas is presented below, with more detail provided in the areas that are impacted by the Project.

Southern pine logs and chips are received at the woodyard. Logs are debarked, chipped, and the chips are screened prior to storage for use within the pulping process. Likewise, purchased wood chips received are screened, and processed as needed, prior to use within the pulping processes.

The kraft (sulfate) process area is used to produce pulp. Pulp from the kraft process is produced from "cooking" wood chips in the continuous digester in a caustic solution at an elevated temperature and pressure. The pulp slurry from the continuous digester is sent to the blow tank, then to one of two parallel pulping lines, each consisting of an enclosed deshive refiner and a three-stage drum displacement washer system and associated filtrate tanks. Weak black liquor from the washer filtrate tanks is stored before being recycled to chemical recovery. Rejects from the refiners are sent to the screw presses, with the filtrate being screened and stored before being recycled to chemical recovery. Washed pulp is stored and then sent to the paper mill area. With the exception of the pulp storage tanks after pulp washing, the kraft pulp mill sources are currently collected and routed to the high volume low concentration (HVLC) or low volume, high concentration (LVHC) systems, and emissions are controlled through combustion in the Nos. 1 or 2 Combination Boilers.

Linerboard (the outside layer of a corrugated container) is produced in the paper mill area on one state-of-the-art paper machine. Unbleached market pulp is produced on one pulp dryer. A second paper machine at the Mill is currently idled.

Weak black liquor is concentrated in the Nos. 1-3 Evaporator Sets and is then fired in the recovery furnaces (chemical recovery area) that burn the organics extracted from the chips and recover cooking chemicals. The causticizing area utilizes the chemicals recovered by the recovery furnaces, and after adding lime, provides the cooking chemicals for the kraft process.

Emissions from the Evaporator Sets and Turpentine Recovery System are collected in the LVHC gas collection system and combusted in the Nos. 1 or 2 Combination Boilers. Several weak black liquor tanks are collected in the HVLC system and combusted in the Nos. 1 or 2 Combination Boilers. Evaporator condensates are segregated, with the combined condensates being recycled to the Brownstock washer system or sewered. The foul condensates are treated in a dual control device configuration: foul condensates are preferentially treated in the existing

condensate steam stripper system, with the remaining flow being directed to the aerated stabilization basin (ASB) via the Hardpipe (ID 9802).

Steam and electricity are produced for facility-wide use by two combination boilers. The recovery furnaces also generate steam.

A waste treatment area receives wastewater and mill waste (solid waste) from the various previously mentioned areas of the facility. Wastewater undergoes biological treatment to remove the dissolved organic wastes prior to discharge into the receiving stream. Mill solid waste is deposited in an on-site landfill.

The miscellaneous areas include everything that is not captured in one of the aforementioned process operating areas, such as facility roads and the pulp storage tanks.

Figure 2-1 Simplified Mill Flow Diagram

This document represents the construction permit application for this Project in accordance with the DHEC Consent Order. The Project consists of the following new equipment and proposed changes to the existing treatment scenarios:

- 1. Construct and operate a new low-pressure steam foul condensate stripper system that will process the pulping process condensates (foul condensate) for compliance with 40 CFR Part 63, Subpart S. The resultant stripped methanol will be condensed into a liquid [called stripper rectified liquid (SRL)] and combusted in the Nos. 2 and 3 Recovery Furnaces (ID Nos. 2505 and 5105). The methanol will be added to the black liquor at a maximum amount of 1% by volume. This methanol addition limit is required for safely operating the recovery furnaces. There are no anticipated changes in black liquor firing as a result of the project. The LVHC gases from the SRL condenser system, stripper feed tank, and SRL methanol tank will be combusted in the No. 3 Recovery Furnace. The LVHC system will include a 1.0 mmBtu/hr natural gas ignitor for combustion of the LVHC gases when black liquor firing is less than 50% of capacity. The existing Nos. 1 and 2 Combination Boilers (ID Nos. 2605 and 3705) will serve as back-up control for the new Stripper's LVHC gases when the SRL condenser system is not in operation. Stripped condensates will be recycled to the Brownstock washers (ID 5230), as needed;
- 2. Operate the existing steam stripper (ID 9801) as a backup to the new low-pressure steam stripper. The existing steam stripper will be operated to process the foul condensate and remove 98% of the total reduced sulfur (TRS) compounds; although with reduced methanol removal efficiency. Further methanol treatment through biological destruction will be accomplished by routing the stripped condensates to the existing Hardpipe system that discharges the foul condensates below the liquid surface of the existing ASB; and
- 3. Modify the No. 3 Recovery Furnace to combust gases collected in the LVHC system. The Nos. 1 and 2 Combination Boilers will serve as backup control for the LVHC gases following the Project. When these LVHC gases are combusted in the combination boilers, a caustic scrubber will be operated to provide 50% removal of the sulfur prior to combustion.

Figure 2-2 presents a simplified process flow with the possible operating scenarios for treatment of the foul condensates and the associated control scenarios for the new and existing steam stripper vent gases. Section 3.2.2.3 presents the prevention of significant deterioration (PSD) analysis that details the basis for the projected actual emissions (PAE) calculations for the proposed future operating scenarios.

Figure 2-2 Stripper Operating Scenarios

3. **REGULATORY REVIEW**

This section summarizes Federal and State air quality regulations that potentially apply to the Project. Discussions pertaining to applicable regulatory requirements are separated into three categories:

- Federal Air Quality Regulations
- South Carolina Air Quality Regulations
- Provisions of the SCDHEC Consent Order and EPA Consent Decree

3.1 FEDERAL AIR QUALITY REGULATIONS

For the purpose of this Application, potentially applicable Federal regulations consist of:

- Standards of Performance for New Stationary Sources (NSPS)
- National Emission Standards for Hazardous Air Pollutants (NESHAP)
- New Source Review (NSR) and PSD
- Compliance Assurance Monitoring (CAM)
- Requirements for Preparation, Adoption, and Submittal of Implementation Plans
- Title V Operating Permits

A discussion of each specific Federal air quality regulation is provided in the following subsections.

3.1.1 Standards of Performance for New Stationary Sources

U.S. EPA has promulgated NSPS at 40 CFR Part 60. NSPS requirements are promulgated under 40 CFR 60 pursuant to Section 111 of the Clean Air Act.

3.1.1.1 40 CFR Part 60, Subparts BB and BBa – Standards of Performance for Kraft Pulp Mills

40 CFR Part 60, Subpart BB – Standards of Performance for Kraft Pulp Mills applies to TRS emissions from digesters, brownstock washers, multiple-effect evaporators, recovery furnaces, smelt dissolving tanks, lime kilns, and condensate strippers that commenced construction, reconstruction, or modification after September 24, 1976, and on or before May 23, 2013. Subpart BBa applies to the same sources that commence construction, reconstruction, or modification after May 23, 2013.

The existing condensate stripper system and Nos. 1-3 Multi-effect Evaporator Sets with Concentrators are currently subject to 40 CFR 60, Subpart BB for TRS (Standards of Performance for Kraft Pulp Mills). Compliance with the TRS standard at 60.283a(a)(1) is currently demonstrated by combusting the stripper off-gases and evaporator vent gases in the Nos. 1 and 2 Combination Boilers per §60.283(a)(1)(iii) [combust the gases at a minimum temperature of 650 °C (1200 °F) for at least 0.5 seconds]. As there are no physical modifications to the existing condensate stripper and Nos. 1-3 Multi-effect Evaporator Sets with Concentrators, the Mill will continue to combust the existing stripper off-gases in the Nos. 1 and 2 Combination Boilers; however, following the Project, the vent gases from the Nos. 1-3 Multi-effect Evaporator Sets with Concentrators will be combusted in the No. 3 Recovery Furnace per §60.283(a)(1)(ii) [gases are combusted in a recovery furnace subject to §60.283(a)(2)] or in the Nos. 1 and 2 Combination Boilers per §60.283(a)(1)(iii).

Upon completion of the Project, the new condensate stripper system will be subject to 40 CFR Part 60, Subpart BBa for TRS (Standards of Performance for Kraft Pulp Mill Affected Sources for Which Construction, Reconstruction, or Modification Commenced After May 23, 2013). Compliance with the TRS standard at 60.283a(a)(1) will be demonstrated through collection of the stripper off-gases (SOG) in the existing SOG collection system and SRL gases in the existing low volume high concentration (LVHC) closed-vent collection system meeting the requirements of §63.450. The SOG will continue to be combusted in the Nos. 1 and 2 Combination Boilers per §60.283a(a)(1)(iii). The LVHC collection system gases will be combusted in the No. 3 Recovery Furnace per §60.283a(a)(1)(ii) or in the Nos. 1 and 2 Combination Boilers per §60.283a(a)(1)(iii). Emissions from the stripper feed tank will also be collected in the LVHC collection system. The Mill will continuously monitor the incineration of SOG and LVHC gases in the No. 3 recovery furnace, each combination boiler, and venting of the SOG and LVHC closed-vent systems as required by §60.284a(d)(3)(iii) and currently utilized for monitoring compliance with Subpart BB.

New-Indy Catawba will maintain records of excess emissions and malfunctions for the new stripper as required by §60.287a(b)(7) and (c), respectively. The Mill will report periods of excess emissions and malfunctions as required by §60.288a(a) and (d), respectively. As defined in §60.284a(e)(1)(vi), periods of excess emissions from the LVHC closed-vent system (condensate stripper system) that are less than one percent (1%) of operating time during a semi-annual period are not a violation of §60.283a(a)(1)(iii).

The stripper feed tank, methanol tank, hot water tank, Hardpipe, and ASB are not included in the definition of condensate stripper system under §60.281 or §60.281a and are not affected sources under Subparts BB or BBa.

3.1.1.2 40 CFR Part 60, Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984

The Project includes a new stripper feed tank, new methanol tank, and a new hot water tank. 40 CFR Part 60, Subpart Kb includes standards of performance for new storage tanks. However, per 60.111b, the definition of storage tank does not include process tanks (tanks that collect material from one part of a process before sending it to another part of the process). Therefore, the new tanks are not subject to Subpart Kb.

3.1.2 National Emission Standards for Hazardous Air Pollutants

NESHAP found in 40 CFR Part 61 apply to specific compounds emitted from certain listed processes. 40 CFR Part 61 subparts do not apply to the Mill, and there are no Part 61 subparts that apply to the proposed Project. Applicability of Part 63 NESHAP is discussed below.

3.1.2.1 40 CFR Part 63, Subpart S – National Emission Standards for Hazardous Air Pollutants from the Pulp and Paper Industry

New-Indy Catawba is subject to 40 CFR Part 63, Subpart S, also referred to as Maximum Achievable Control Technology (MACT) I for the pulp and paper industry. This standard regulates hazardous air pollutant (HAP) emissions from pulping and bleaching systems. The affected source under this standard is the total of all HAP emission points in the pulping and bleaching systems. The Mill does not produce bleached pulp and is therefore not subject to the requirements of §63.445.

The Nos. 1-3 Multi-effect Evaporator Sets with Concentrators and Turpentine Recovery System were constructed prior to 1993 and are existing affected sources, while the existing condensate stripper was constructed after 1993, making it a new source under 40 CFR Part 63, Subpart S. Compliance is currently demonstrated by collecting the gases in the existing LVHC closed-vent system meeting the requirements of 63.450 and combustion of the SOG and LVHC system gases in the Nos. 1 and 2 Combination Boilers per 63.443(d)(4)(i) (introduce the HAP emission stream with the primary fuel or into the flame zone). The Mill currently complies with the pulping condensates collection requirements in 63.446(c)(1) [collect all named pulping process condensate streams listed in 40 CFR § 63.446(b)(1-5)] and the treatment requirements in 63.446(c)(4) [treat a minimum of 6.6 lb HAP per ton oven dried ton of pulp (ODTP)]. The Mill has utilized concurrent use of the existing steam stripper and Hardpipe for compliance with 863.446(c)(4).

Subpart S requires collection of LVHC gases from steam stripper systems, defined to include the stripper column, associated feed tanks, condensers, and any methanol rectification process. The new condensate stripper, stripper feed tank, methanol condenser, and methanol tank will be subject to this rule upon startup.

Following the completion of the proposed Project, SOG from the existing condensate stripper and vent gases from the existing Nos. 1-3 Multi-effect Evaporator Sets with Concentrators and Turpentine system will continue to be collected in the existing LVHC closed-vent system meeting the requirements of §63.450 and §63.453(k)(1-6). The existing SOG will continue to be combusted in the Nos. 1 and 2 Combination Boilers per §63.443(d)(4)(i). However, the vent gases from the LVHC collection system will be combusted in the No. 3 Recovery Furnace or in the Nos. 1 and 2 Combination Boilers (as backup) per §63.443(d)(4)(i). The Mill will update the leak detection and repair (LDAR) site inspection plan as appropriate per §63.454(b).

The Mill plans to demonstrate compliance with the pulping condensates collection requirements in §63.446(c)(3) [collect the pulping process condensates from equipment systems listed in §63.446(b)(1) through (b)(5) that in total contain 7.2 lb HAP/ODTP] and the treatment requirements in §63.446(e)(4) [treat a minimum of 6.6 lb HAP/ODTP]. The Mill will utilize the new condensate stripper for compliance with §63.446(e)(4) and will operate a continuous monitoring system for the parameters in §63.453(g)(1-3). Vents from the new condensate stripper (including the stripper feed tank, SRL condenser, and SRL methanol tank) will be collected in the existing LVHC closed-vent system meeting the requirements of §63.450 and combusted in the No. 3 Recovery Furnace or Nos. 1 and 2 Combination Boilers per §63.443(d)(4)(i). The Mill will update the LDAR site inspection plan as appropriate per §63.454(b) and will perform the required inspection and monitoring requirements per §63.453(k)(1-6). The new stripper will be included in semi-annual excess emission reports under §63.455. Per §63.446(g), periods of excess emissions reported under §63.455 are not considered a violation of §63.446(e)(4) provided that the time of excess emissions divided by the total process operating time in a semi-annual reporting period does not exceed 10 percent.

At the request of SCDHEC, the Mill is providing additional information regarding plans to demonstrate continuous compliance with the pulping condensate collection and treatment in the new steam stripper. These are as follows:

- Pulping condensate collection emissions limit of 7.2 lb HAP/ODTP:
 - HAP will be measured "as methanol" per 63.457(f)(2);
 - Daily sampling of foul condensates for methanol concentration representative of the inlet to the new stripper;

- Continuous measurement of new steam stripper inlet foul condensate feed flow (gpm);
- Daily measurement of pulp production (ODTP); and
- Daily calculation of a 15-day rolling average collection (lbs methanol/ODTP) [Note: The Mill may use historical and/or collect future foul condensate sampling data to support a longer averaging period].
- Pulping condensate treatment in the new steam stripper to remove 6.6 lb HAP/ODTP:
 - HAP will be measured "as methanol" per §63.457(f)(2); and
 - Daily sampling of stripped condensates for methanol concentration representative of the outlet of the new stripper.
 - Continuous measurement of:
 - New steam stripper inlet foul condensate feed flow (gpm);
 - New steam stripper steam feed flow (lbs/hr);
 - Foul condensate to new steam stripper feed temperature (°F); and
 - New steam stripper stripped condensate flow (gpm).
 - Daily measurement of pulp production (ODTP).
 - o Daily calculation of the percent methanol removed in the steam stripper .
 - Daily calculation of the treatment in the new steam stripper [15-day (or other averaging period, as justified) rolling average methanol collected (lbs methanol/ODTP) multiplied by the calculated daily methanol percent removal in the new stripper].

Please note that the Mill may choose to establish a methanol concentration factor in lieu of daily methanol sampling at the inlet to the new steam stripper once sufficient data has been collected demonstrating consistency in the foul condensate methanol concentration. In addition, the Mill may choose to establish an effective steam to feed ratio (ESFR) curve for the new stripper system to be used to establish the methanol removal efficiency across the stripper in lieu of the method described above. The compliance approach will be delineated in the Notification of Compliance Status (NOCS) that will be submitted with the results of the initial compliance demonstration to be conducted within 180 days of startup of the new stripper system.

3.1.2.2 40 CFR Part 63, Subpart MM National Emission Standards for Hazardous Air Pollutants (NESHAP) for Chemical Recovery Combustion Sources at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills

New-Indy Catawba is subject to 40 CFR Part 63, Subpart MM, also referred to as MACT II for the pulp and paper industry. This standard regulates particulate matter (PM) emissions from existing recovery boilers, smelt tanks, and lime kilns when processing black liquor or calcium oxide. The Nos. 2 and 3 Recovery Furnaces are currently subject to the existing source requirements of this regulation. The proposed Project will modify the LVHC collection system

that delivers the LVHC gases to the No. 3 Recovery Furnace for combustion, but no changes in black liquor firing are expected for the recovery furnaces and PM emissions from black liquor combustion are not expected to increase. The Mill will continue to meet the existing PM emission limits under Subpart MM after completion of the Project.

3.1.2.3 40 CFR Part 63, Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (non-Gasoline)

Subpart EEEE applies to organic liquids distribution (OLD) operations at major sources of HAP. The Project includes installation of a new methanol tank and a new hot water tank. However, these new tanks are not subject to this rule because they are part of the Mill's pulping system as defined under Subpart S. EPA confirmed that tanks in pulp and paper mills that are part of the pulping or bleaching systems are not subject to Subpart EEEE in a December 2004 determination (ADI Control Number M050008).

3.1.2.4 40 CFR Part 63, Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters.

New-Indy Catawba is subject to 40 CFR Part 63, Subpart DDDDD, also referred to as Boiler MACT. Boiler MACT sets forth emissions limits and work practice standards; testing and fuel analyses requirements; and monitoring, recordkeeping, notification, and reporting requirements that apply to boilers and process heaters located at major sources of HAP. The Nos. 1 and 2 Combination Boilers are subject to the requirements of 40 CFR Part 63, Subpart DDDDD. The Nos. 2 and 3 Recovery Furnaces are not subject to the rule per §63.7491(b). The Project will not affect the regulatory applicability of 40 CFR Part 63, Subpart DDDDD, for either combination boiler and will not affect compliance with the applicable emissions limits. The Mill will continue to comply with the currently applicable provisions of 40 CFR Part 63, Subpart DDDDD, in the same manner after completion of the Project.

3.1.3 New Source Review

The Mill is located in York County which is classified as in attainment of or unclassifiable for the National Ambient Air Quality Standards (NAAQS) for regulated NSR pollutants. Therefore, Nonattainment New Source Review (NNSR) regulations do not apply to this Project and the Project is analyzed for applicability as it relates to the PSD requirements. Implementation of the PSD regulations (i.e., 40 CFR §51.166) has been delegated in full to the State of South Carolina. Refer to Section 3.2.2.3 for a discussion of PSD applicability.

3.1.4 Compliance Assurance Monitoring

U.S. EPA developed the CAM rule at 40 CFR Part 64 as a means for providing reasonable assurance that continuous compliance with applicable requirements is achieved for certain emissions units located at major stationary sources subject to Title V permitting. CAM applies to pollutant-specific emissions units (PSEUs) that (1) are subject to an emissions limit or standard (2) use a control device to achieve compliance with that emissions limit or standard, and (3) have potential pre-control device emissions in the amount required to classify the unit as a major source under Part 70 of the Clean Air Act (CAA). Part 64 does not apply to emissions limitations or standards proposed after November 15, 1990 pursuant to Section 111 or 112 of the Clean Air Act (e.g., post-1990 NSPS or NESHAP). The proposed Project is not subject to CAM requirements because the new steam stripper is subject to 40 CFR Part 60, Subpart BBa and 40 CFR Part 63, Subpart S, which are standards proposed after November 15, 1990.

3.1.5 Requirements for Preparation, Adoption, and Submittal of Implementation Plans

U.S. EPA requires air agencies to develop and submit air quality data characterizing maximum 1-hour ambient concentrations of sulfur dioxide (SO₂) through ambient air quality monitoring or air quality modeling analysis at the air agency's election. These requirements are promulgated under 40 CFR Part 51.

3.1.5.1 40 CFR Part 51, Subpart BB—Data Requirements for Characterizing Air Quality for the Primary SO₂ NAAQS (SO₂ Data Requirements Rule or SO₂ DRR)

The Mill submitted facility-wide air dispersion modeling in November 2016 to comply with 40 CFR 51.1203(d). The Mill updated the facility-wide air dispersion modeling in October 2021. The actual SO₂ emissions following the Project are expected to remain below the SO₂ emission rates included in the modeling analysis submitted in 2016 and 2021. The Mill will continue to perform and annual review of the actual SO₂ emission rates against the 2016 and 2021 model emission rates to determine if an updated modeling demonstration is necessary.

3.1.6 Title V Operating Permits

New-Indy Catawba operates under TVOP TV-2440-0005 issued on May 7, 2019, with an effective date of July 1, 2019, and an expiration date of December 31, 2023. Through this Application, New-Indy Catawba is requesting a construction permit to perform the Project. Construction permit application forms required by SCDHEC are included in Appendix A. New-Indy Catawba will request a modification to the TVOP within 15 days of startup of the Project, which is required by the Consent Order to be no later than June 30, 2025.

NEWOINDY

3.2 SOUTH CAROLINA AIR QUALITY REGULATIONS

This section addresses the applicability of state air regulatory requirements to the Project.

3.2.1 Regulation 61-62.1: Section II, Permit Requirements

This regulation specifies the construction and operating permit requirements for new or modified sources. This permit application is intended to satisfy the construction permitting requirements of Regulation 62.1 Section II. Completed SCDHEC construction permit application forms are included in Appendix A.

3.2.2 Regulation 61-62.5: Air Pollution Control Standards

The list below identifies potentially applicable SC air pollution control regulations and standards associated with the Project.

- Standard No. 2 Ambient Air Quality Standards
- Standard No. 3 Waste Combustion and Reduction
- Standard No. 4 Emissions from Process Industries
- Standard No. 7 Prevention of Significant Deterioration
- Standard No. 8 Toxic Air Pollutants

3.2.2.1 Standard No. 2 – Ambient Air Quality Standards

SCDHEC Standard No. 2 addresses the National Ambient Air Quality Standards (NAAQS). Except for an ambient air quality standard for gaseous fluorides, the SCHDEC ambient air quality standards are equivalent to the Federal NAAQS. New-Indy Catawba has previously submitted facility-wide air dispersion modeling evaluations to demonstrate compliance with Standard No. 2.

The Project may slightly increase the actual emissions of SO_2 , nitrogen oxides (NO_X), and carbon monoxide (CO) from the No. 3 Recovery Furnace when burning LVHC gases. However, the maximum SO_2 and NO_X emissions from the No.3 Recovery Furnace when burning LVHC gases will be less than 10 percent of the emissions from burning the LVHC gases in the Nos. 1 and 2 Combination Boilers. The maximum SO_2 and NO_X emissions from LVHC combustion in the combination boilers are not expected to change as a result of the project. The CO emissions from burning LVHC gases will be unchanged when combusted in the recovery furnace or the combination boilers.

The emissions of SO₂, NO_X, CO, particulate matter (PM), PM less than 10 microns (PM₁₀), and PM less than 2.5 microns (PM_{2.5}) from the LVHC System natural gas ignitor in the No. 3 Recovery Furnace are well below the 1.14 pounds per hour modeling exemption threshold in the South Carolina Modeling Guidelines², Section 2.2.3. Therefore, the very small emissions increases from the LVHC natural gas ignitor have not been modeled for this permit application.

The additional steam potentially required from the combination boilers to operate the new condensate stripper will not exceed the current steaming capacity of each combination boiler, as reflected in the SO₂, NO_x, CO, PM, PM₁₀, PM_{2.5} and CO emissions rates modeled previously. Therefore, no updates to the modeled emissions rates from the combination boilers are required for this permit application.

The SO₂ emissions from the Project will decrease by more than 100 tons per year. The reduction in SO₂ emissions meets the single factor emissions netting option 2 in the South Carolina Other Information Guidance³. The modeled SO₂ Emissions Rate from black liquor combustion in the 2016 and 2021 SO₂ DRR modeling is 18.70 lb/hr from the No. 3 Recovery Furnace. The maximum SO₂ emissions rate from burning black liquor in the 2018 Title V renewal application is 5.95 pounds per hour. The additional SO₂ emissions from LVHC gases and methanol combustion is 7.4 pounds per hour, making the new total SO₂ emissions rate from black liquor combustion. Therefore, no updates to the SO₂ modeling submitted previously in 2016 and 2021 have been prepared for this permit application.

The NO_X emissions will increase from the Project less than one-half the Prevention of Significant Deterioration (PSD) significance threshold, due primarily to increased steam usage by the new condensate stripper. The NO_X emissions due to the Project meet weight of evidence approach 1 in the South Carolina Other Information. The modeled NO_X Emissions Rate for Ambient Air Standards in the current Title V permit is 146.03 lb/hr from the No. 3 Recovery Furnace. The maximum NO_X emissions rate from burning black liquor in the 2018 Title V renewal application is 122.4 pounds per hour. The additional NO_X emissions from LVHC gases and methanol combustion is 2.3 pounds per hour, making the new total NO_X emissions rate.

² South Carolina Modeling Guidelines for Air Quality Permits (Revised April 15, 2019).

³ Guidance Concerning Other Information Used for Permitting Requirements in Demonstrating Emissions Do Not Interfere With Attainment or Maintenance of any State of Federal Standard (Updated December 12, 2018).

Therefore, no updates to the NO_X modeling submitted previously have been prepared for this permit application.

The CO emissions will increase from the Project less than one-half the Prevention of Significant Deterioration (PSD) significance threshold, due primarily to increased steam usage by the new condensate stripper. The CO emissions due to the Project meet weight of evidence approach 1 in the South Carolina Other Information. The CO emissions from burning LVHC gases will be unchanged when combusted in the recovery furnace or the combination boilers. The modeled CO Emissions Rate for Ambient Air Standards in the current Title V permit is 330.96 lb/hr from the No. 3 Recovery Furnace. The maximum CO emissions rate from burning black liquor in the 2018 Title V renewal application is 102.9 pounds per hour. The additional CO emissions from LVHC gases and methanol combustion is 8.3 pounds per hour, making the new total CO emissions rate. Therefore, no updates to the CO modeling submitted previously have been prepared for this permit application.

Therefore, no updates to the previous Standard No. 2 modeling demonstration are required.

3.2.2.1 Standard No. 3 – Waste Combustion and Reduction

Standard No. 3 applies to any source that burns any waste other than virgin fuels for any purpose. The standard contains various exemptions for the pulp and paper source category. Section I.J.1 specifies that recovery furnaces burning black liquor and TRS compounds are not subject to the standard. Section I.J.1 also specifies that gaseous process streams containing TRS compounds that are regulated in accordance with Section XI of Regulation 61-62.5, Standard No. 4, or NSPS are not subject to Standard No. 3. Because the SOG and LVHC collection system gases containing TRS that are regulated in accordance with Standard No. 4 or NSPS Subpart BB/BBa, combustion of those gases in combination boilers or recovery furnaces is not subject to Standard No. 3.

Standard No. 3 specifically states that any "facility with an emission unit and/or control device that complies with all the requirements of an applicable Maximum Achievable Control Technology (MACT) Standard under 40 CFR 63, including the testing and reporting requirements, may request an exemption from this standard." (61 -62.5, Section 1.J.3.)

During development of the Pulp and Paper MACT regulations at 40 CFR 63, Subpart S, U.S. EPA reviewed the practice of combusting methanol condensed from stripper-off-gases. The U.S. EPA determined that the methanol condensate "does not appear to contain metal or chlorinated organic HAP's ..." (61 Fed. Reg. 9397) (emphasis added). The U.S. EPA also found that burning methanol condensate "will not increase the potential environmental risk over the burning of the

steam stripper vent gases prior to condensation." U.S. EPA reaffirmed this conclusion in 2011 during its Residual Risk and Technology Review (RTR) of the Pulp and Paper (Subpart S) MACT. In the final RTR rule, U.S. EPA stated: "We conclude based on the Residual Risk Assessment cited here that the risks from the subpart S pulp and papermaking source category are acceptable and that the current standard protects the public health with an ample margin of safety. Consequently, we are re-adopting the MACT standards for subpart S pursuant to our 112(f)(2) review." (77 Fed. Reg. 55705)

Therefore, the combustion of black liquor and condensed methanol from stripper-off-gases in the recovery furnaces mill qualifies for the exemption from Standard No. 3 provided in Section 1.J.3.

3.2.2.2 Standard No. 4 – Emissions from Process Industries

SCDHEC Regulation 61-62.5, Standard No. 4 establishes standards for opacity and certain other pollutants for specific sources in specific industries and establishes PM and opacity standards for industrial processes not otherwise regulated. The new steam stripper and the new tanks do not cause visible emissions into the atmosphere; therefore, this standard does not apply.

Section XI regulates emissions of TRS from Kraft Pulp Mills where construction or modification commenced prior to September 24, 1976 from recovery furnaces, digester systems, multiple-effect evaporator systems, lime kilns, and condensate stripper systems. The No. 2 Recovery Furnace is currently subject to Standard 4 and will continue to comply with the TRS limits after completion of the Project. The TRS emissions from the No. 3 Recovery Furnace, Nos. 1-3 Evaporator Sets with Concentrators, and the existing steam stripper are subject to 40 CFR Part 60, Subpart BB. The TRS emissions from the new condensate stripper will be subject to 40 CFR Part 60, Subpart BBa.

3.2.2.3 Standard No. 7 – Prevention of Significant Deterioration – Permit Requirements

PSD requirements apply to major stationary sources of regulated NSR pollutants that are located in areas that are in attainment with the NAAQS or unclassifiable. Implementation of the PSD regulations has been delegated in full to the State of South Carolina. These air quality regulations are contained in SCDHEC Regulation 61-62.5, Standard No. 7. The PSD regulations apply to major modifications at major stationary sources, which are considered those sources belonging to any one of the 28 source categories listed in the regulations that have the potential to emit (PTE) 100 tons per year (tpy) or more of an NSR-regulated pollutant, or any other source that has the PTE 250 tpy or more of an NSR-regulated pollutant. The Mill is considered a major stationary source because it emits or has the PTE 100 tpy or more of a regulated NSR pollutant.

Because it includes physical changes to the Mill, the installation of the new steam stripper is a "project" as defined in Standard No. 7(b)(40).

New-Indy Catawba has assessed the applicability of PSD to this Project by performing the hybrid test as prescribed under U.S. EPA's PSD rules (as adopted by South Carolina) at 40 CFR 52.21(a)(2)(iv)(f), described as the hybrid test for projects that involve multiple types of emissions units. The future emissions from the backup steam stripper system, existing foul condensate Hardpipe, existing ASB, existing evaporator and turpentine recovery system LVHC gases, and steam required for the existing steam stripper system are calculated as PAE per SCDHEC Regulation 61-62.5, Standard No. 7, paragraph (B)(41). The future emissions from the new steam stripper are PTE per SCDHEC Regulation 61-62.5, Standard No. 7, paragraph (B)(37).

The PSD applicability analysis has been completed for the applicable NSR regulated air pollutants, including SO₂, NO_x, CO, volatile organic compounds (VOC), TRS, H₂S, PM, PM₁₀, PM PM_{2.5}, lead (Pb), sulfuric acid mist, and carbon dioxide as CO₂e (CO₂e). There are no increases in emissions of fluorides from the Project. Emissions calculations used for determining PSD applicability are included in Appendix B.

At this time, New-Indy Catawba has not excluded emissions the mill was capable of accommodating during the baseline period or excluded demand growth from the projected actual emissions as allowed under SCDHEC Regulation 61-62.5, Standard No. 7, paragraph (B)(41)(b)(iii). New-Indy Catawba may decide to utilize these two exclusions from PAE during this or future permitting if desirable.

3.2.2.3.1 Baseline Actual Emissions

Baseline actual emissions (BAE) from an existing source are defined by Standard No. 7, paragraph (B)(4)(b) as:

"the average rate, in tpy, at which the emissions unit actually emitted the pollutant during any consecutive 24-month period selected by the owner or operator within the 10-year period immediately preceding either the date the owner or operator begins actual construction of the project, or the date a complete permit application is received by the Department for a permit required under this section or under a plan approved by the Administrator, whichever is earlier, except that the 10-year period shall not include any period earlier than November 15, 1990."

BAE for all existing sources and pollutants are based on the 24-month period following conversion of the mill to manufacturing unbleached paper grades starting in March 2021 and extending through February 2023. For simplicity, baseline annual production rates are assumed

to occur over 8,760 operating hours. The BAE for the existing steam stripper (aka future backup stripper) off gases (and the required steam) are adjusted using the actual operating days to reflect that the stripper did not return to service until May 3, 2021.

Sulfur Dioxide

The baseline actual SO_2 emissions from burning the SOG from the existing steam stripper and LVHC collection system gases are based on the average emissions factors developed from the most recent (October 2021) source testing for SO_2 . The emissions are further sub-divided between LVHC and HVLC streams using the post-Project Columbia SO_2 emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Nitrogen Oxides and Carbon Monoxide

The baseline actual NO_X and CO emissions from burning the SOG from the existing steam stripper are based on the post-Project Columbia NO_X emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Volatile Organic Compounds

The baseline actual VOC emissions from the existing condensate stripper system are based on the actual amount of methanol stripped from the foul condensate during the baseline period for which records are available. The non-methanol VOC emissions (including the TRS compounds that are also VOC as further described in the next section) from the ASB from treatment of Mill process wastewater and the foul condensate not treated in the existing steam stripper are calculated using the U.S. EPA WATER9 Model. To calculate methanol emissions from the ASB, New-Indy Catawba used a spreadsheet version of the WATER9 calculations from the National Council for Air and Stream Improvement (NCASI) to calculate the fractions biodegraded and emitted developed from Procedure 5 (Multiple Zone Concentration Measurements) in 40 CFR Part 63, Appendix C, Form XIII ("NCASI Form XIII calculation spreadsheet"). The WATER9 Model and Form XIII calculation utilize site-specific liquid concentration data, the site-specific configuration of the treatment unit [including the area or length of unit, liquid depth, wind speed, aeration type (i.e., mechanical aeration)], and the total amount of aeration to calculate the emissions rate in grams per second (g/s).

Baseline actual methanol emissions from the ASB are based on the NCASI Form XIII calculations for NESHAP Subpart S performance testing conducted during the baseline period. The baseline actual VOC emissions from the LVHC collection system are based on the post-Project Columbia

VOC emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Hydrogen Sulfide and Total Reduced Sulfur Compounds

The baseline hydrogen sulfide (H₂S) and total reduced sulfur (TRS) emissions from burning the SOG from the existing steam stripper and the LVHC collection system gases are based on the average emissions factors developed from the June 2021 source testing for H₂S and TRS. The emissions are further sub-divided between LVHC and HVLC streams using the post-Project Columbia H₂S and TRS emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

The baseline actual H₂S emissions from the ASB from treatment of Mill process wastewater and the foul condensate not treated in the existing steam stripper are calculated using the NCASI Hydrogen Sulfide Emissions Simulator, or "H2SSIM" Model, which utilizes site-specific wastewater configuration, site-specific liquid test results for H₂S, and site-specific data inputs [e.g., temperature, dissolved oxygen (DO), pH]. H2SSIM inputs are based on May and July 2022 sampling data for H₂S in the foul condensate, as well as dissolved oxygen (DO) data for the ASB taken during NESHAP Subpart S performance testing during the baseline period. The baseline emissions for methyl mercaptan (MMC), dimethyl disulfide (DMDS), and dimethyl sulfide (DMS) are calculated using WATER9 based on May and July 2022 sampling of the foul condensate. During the May and July 2022 testing, foul condensate sample results were representative of the concentrations before chemical oxidant was added. The Mill has been chemically oxidizing the contents of the Hardpipe prior to entry into the ASB since June 2021. For calculating BAE of H₂S and TRS emissions from the ASB, the May and July 2022 foul condensate samples were adjusted as follows to account for the effects of the chemical oxidant:

- H_2S concentrations in the Hardpipe effluent were reduced by 99%.
- DMS concentrations in the Hardpipe effluent were reduced by 90%.
- MMC concentrations in the Hardpipe effluent were reduced by 99% and assumed to be converted to DMDS.
- DMDS concentrations are assumed to not be reduced by chemical oxidant. DMDS concentrations in the Hardpipe effluent were increased to account for the oxidation of MMC to DMDS.

These adjustments are based on NCASI Technical Bulletin No. 949, Section 5.3.1 for Hydrogen Peroxide and additional bench scale study results and curves provided by NCASI. Pertinent pages from NCASI Technical Bulletin No. 949 and the bench scale study are attached as supporting information in Appendix B.

Steam Baseline

The BAE of products of combustion (NO_X, CO, VOC, PM, PM₁₀, PM_{2.5}, Lead, and CO₂e) for the steam required by the existing steam stripper are based on the actual heat input from fossil fuels to both combination boilers during the baseline period. New-Indy Catawba operates the two recovery furnaces as base-loaded steam generators with the combination boilers handling most swings in steam load. New-Indy Catawba burns all the biomass available in the combination boilers because biomass is the most cost-effective fuel on an MMBtu basis. Additional steam is generated from burning natural gas and No. 6 fuel oil as needed. During the baseline period, natural gas accounted for 97.9% of the fossil fuel heat input to both combination boilers, with No. 6 fuel oil constituting the remaining 2.1% of the fossil fuel heat input.

3.2.2.3.2 Projected Actual Emissions and Potential to Emit

PAE is defined by the SCDHEC Regulation 61-62.5, Standard No. 7, paragraph (B)(41) as:

"the maximum annual rate, in tpy, at which an existing emissions unit is projected to emit a regulated NSR pollutant in any one of the five (5) years (12-month period) following the date the unit resumes regular operation after the project, or in any one of the ten (10) years following that date, if the project involves increasing the emissions unit's design capacity or its potential to emit that regulated NSR pollutant and full utilization of the unit would result in a significant emissions increase or a significant net emissions increase at the major stationary source."

As described previously, PAE are calculated from the existing steam stripper, existing foul condensate Hardpipe, existing ASB, existing LVHC collection system gases, and steam required for the existing steam stripper.

PTE is defined by the SCDHEC Regulation 61-62.5, Standard No. 7, paragraph (B)(37) as:

"the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable."

The future emissions from the new steam stripper system and the generation of steam to operate the new steam stripper system are PTE.

PAE and PTE were calculated for three different stripper operating scenarios as shown below in Table 3-1. The new stripper is expected to be online at least 90% of the annual operating time. The backup steam stripper is expected to be online 8% of the annual operating time. There will also be brief periods when the new stripper may need to go offline and the backup stripper brought into service. During these transition periods, untreated foul condensate will be discharged through the Hardpipe to the ASB. While in the Hardpipe prior to entering the ASB, the TRS compounds in the condensates will be chemically oxidized to reduce the potential for odors from the ASB when operating during these brief transition periods, which are expected to be equal to or less than 2% of the annual operating time.

The PAE and PTE for all scenarios are based on the design foul condensate sulfur loading [168 parts per million by weight (ppmw)] and maximum design foul condensate flow [850 gallons per minute (gpm)]. Emissions factors [on a pound per air-dried ton of pulp (lb/ADTP) basis] are calculated based on 2,444 ADTP/day, which is at the lower range of production for which the maximum design foul condensate flow is expected. The design foul condensate sulfur loading is based on liquid samples taken during the June 2021 site-specific testing. The sulfur concentration of 168 ppmw at the design foul condensate flow is equivalent to 0.70 pound of TRS as sulfur per ADTP. PAE are calculated for each of the three stripper operating scenarios based on 8,760 hours per year and a maximum pulp production of 2,700 ADTP/day.

The following sections provide further detail and different operating configurations within particular scenarios.

New Steam Stripper Online Scenario

While the new steam stripper is operating, the stripped condensate from the new steam stripper will be recycled to the brownstock washers, as needed.

The new stripper has two operating configurations, with and without the rectified methanol system operating. The rectified methanol system will separate methanol from the new stripper's offgases. The rectified methanol is referred to as SRL. As stated previously, the new steam stripper is expected to be online at least 90% of the annual operating time. The rectified methanol system is expected to be online 95% of the time that the new stripper is operating. A summary of the different operating control configurations for when the new stripper is operating is summarized in Table 3-2 below.

Table 3-1 Stripper Operating Scenarios

	Stripper Scenario Operating Time			
Stripper Operating Scenario	%	hrs		
New Stripper Online	90%	7,884.0		
Backup Stripper Online	8%	700.8		
No Stripper Online (Foul Condensate to Hard Pipe)	2%	175.2		

Table 3-2 New Stripper System Operating Scenarios

Stripper Operating	Stripper Scenario Operating Time		Operating	Oper	rating ation Time		Controls Operating Time	
Scenario	%	hrs	Configuration	%	hrs	Controls	%	hrs
			SRL Online	95%	7,489.8	SRL Methanol to RF2/3	100.0%	7,489.8
New Stripper Opling	0.0%	7 994 0	SRL Online	95%	7,489.8	SRL LVHC to RF3	75.0%	5,617.4
New Stripper Unline	50%	7,884.0	SRL Online	95%	7,489.8	SRL LVHC to CB1/CB2	25.0%	1,872.5
			SRL Offline	5%	394.2	SOG to CB1/CB2	100.0%	394.2

The SRL methanol is expected to contain approximately 40% of the TRS, with the remaining 60% in the LVHC off-gases from the rectified methanol system. The SRL methanol will be blended with black liquor and burned in both recovery furnaces at a maximum concentration of 1% for safe operation of each recovery furnace. The sodium fume inside the recovery furnace absorbs the sulfur from combustion of the black liquor and will also absorb the sulfur from combustion of the solution of the salt fume based on information provided in NCASI Technical Bulletin No. 604. This is expected to occur 100% of the time the rectified methanol system is operating (SRL mode).

When operating in SRL mode, the LVHC off-gases from the rectified methanol system will be vented into the LVHC System. In addition, the LVHC gases from the evaporators and turpentine recovery system will be vented to the No. 3 Recovery Furnace as part of this project. The No. 3 Recovery Furnace is expected to be available for LVHC combustion at least 75% of the operating time. When the No. 3 Recovery Furnace cannot receive these gases, the LVHC will be combusted in the combination boilers the remaining 25% of the time. The LVHC gases will pass through the LVHC caustic scrubber prior to being combusted in the combination boilers. The LVHC scrubber removes approximately 50% of the sulfur from the gas stream. The LVHC gas scrubber is not necessary and will not be used when the LVHC gases are being combusted in the No. 3 Recovery Furnace because the salt fume in the recovery furnace provides the expected sulfur control.

Sulfur Dioxide, Hydrogen Sulfide, and Total Reduced Sulfur Compounds

As previously stated, the SRL methanol is expected to contain approximately 40% of the TRS as sulfur foul condensate loading of 0.70 lb S/ADTP. The sodium fume inside the recovery furnace absorbs the sulfur produced from combusting black liquor and will also absorb the sulfur produced by combusting the foul condensate present in the methanol. It is conservatively assumed that 99% of the sulfur from combusting the SRL methanol is absorbed by the sodium fume (NCASI Technical Bulletin 604), and the remaining 1% is oxidized to SO₂. This is expected to occur 100% of the time in SRL mode.

To calculate TRS and H_2S emissions from burning the SRL methanol in the recovery furnaces, a sulfur capture of 99% is applied with a 99% conversion factor to SO₂, for a combined capture and conversion factor of 99.9%.

Similarly, the LVHC gases from the rectified methanol system are expected to contain approximately 60% of the TRS as sulfur foul condensate loading of 0.70 lb S/ADTP and will be vented into the LVHC System. When the LVHC is combusted in the No. 3 Recovery Furnace, the sodium fume inside the recovery furnace is also expected to absorb 99% of the sulfur from the LVHC gases before it can be converted to SO₂. When the LVHC is combusted in the combination boilers, the LVHC scrubber will capture 50% of the sulfur before conversion to SO₂. H₂S and

TRS emissions from the rectified methanol system LVHC are calculated based on conservatively assuming 99.9% capture or conversion to SO_2 in the recovery furnace and 99% conversion to SO_2 in the combination boilers.

When the rectified methanol system is not operating, SOG from the new stripper will be vented to the combination boilers, and the TRS as sulfur foul condensate loading of 0.70 lb S/ADTP is assumed to be 100% converted to SO_2 to calculate SO_2 emissions. H₂S and TRS emissions from combusting SOGs in the combination boilers are based on conservatively assuming a 99% conversion to SO_2 .

When the new stripper is operating, regardless of SRL status, there will be no foul or stripped condensate flow to the Hardpipe. Projected emissions of TRS compounds (excluding H_2S) from the ASB are calculated based on the WATER9 Model. Projected emissions of H_2S from the ASB are calculated based on the H2SSIM Model. Both WATER9 and H2SSIM emissions calculations are based on the average ASB influent concentrations from data collected during the 2021 and 2022 TRS testing efforts.

Nitrogen Oxides

When the rectified methanol system is operating, the methanol condenser is expected to condense more than 90% of the methanol in the SOG. The SOG also contains ammonia, which is also expected to be condensed with the methanol. The remaining ammonia will be vented with the SRL off-gases into the LVHC system. As a result, there will be an increase in ammonia when (1) SRL methanol is mixed with liquor and burned in the recovery furnaces and (2) the SRL LVHC off-gases are combusted in the No. 3 Recovery Furnace.

The ammonia in the methanol is expected to contribute less than 1% of the total nitrogen in the black liquor. The NO_X emissions from the recovery furnaces have been conservatively assumed to increase 1% when burning SRL methanol and the SRL LVHC.

The NO_X emissions from combustion of the SRL LVHC and SOG in the combination boilers are based on the post-Project Columbia NO_X emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Carbon Monoxide

In SRL mode, the SRL methanol will be blended with the black liquor and burned in both recovery furnaces at a maximum concentration of 1% for safe operation of each recovery furnace. There is

no information to suggest the CO emissions will change when the SRL methanol is burned in the recovery furnaces.

The CO emissions from combustion of the SRL LVHC and SOG are based on the post-Project Columbia CO emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Volatile Organic Compounds

The projected actual VOC emissions for the new steam stripper system are based on the theoretical maximum methanol collection (16 lb/ODTP) at the maximum pulp production (2,700 ADTP/day).

In SRL mode, the SRL methanol will be blended with the black liquor and burned in both recovery furnaces at a maximum concentration of 1% for safe operation of each recovery furnace. The SRL methanol will be combusted in the recovery furnace to an expected 99.9% VOC destruction in the liquid phase.

When the new stripper is operating, there will be no foul or stripped condensate flow to the Hardpipe. Non-methanol VOC emissions (acetaldehyde, methyl ethyl ketone, propionaldehyde, and TRS VOCs) from the ASB are calculated based on WATER9, using the average ASB influent concentrations from data collected during 2021 and 2022 TRS and NESHAP Subpart S testing efforts. Methanol emissions from the ASB are based on the NCASI Form XIII calculation spreadsheet using the average ASB influent and effluent methanol concentrations from all data collected during 2021 and 2022 and the average zone treatment profiles from 2021 and 2022 NESHAP Subpart S performance tests.

Backup Stripper Online Scenario

As stated previously, once the new stripper is installed, the existing stripper will be demoted to the backup steam stripper role. The backup steam stripper is expected to be online 8% of the annual operating time. The backup steam stripper will be operated in "TRS mode" to remove TRS from the foul condensate. In TRS mode, the backup stripper will also remove approximately 45% of the methanol from the foul condensate. The SOG from the backup steam stripper will be vented to the combination boilers. The stripped condensate from the backup steam stripper will be discharged to the Hardpipe where the remaining unstripped methanol will be biologically treated in the ASB.

Sulfur Dioxide

The backup steam stripper will be operated in "TRS mode" to remove TRS from the foul condensate. SO_2 emissions from combustion of the backup stripper SOG in the combination

boilers are conservatively calculated assuming all of the 0.70 lb S/ADTP of sulfur present in the foul condensate will be captured in the SOG and converted to SO_2 during combustion.

Nitrogen Oxides and Carbon Monoxide

The NO_X and CO emissions from combustion of SOG are based on the post-Project Columbia NO_X emissions factors presented in Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

Volatile Organic Compounds

The projected actual VOC emissions for the backup stripper are based on the maximum expected methanol collection (16 lb/ODTP) at the maximum pulp production (2,700 ADTP/day). To calculate VOC emissions from backup stripper SOG combustion, it is conservatively assumed that the methanol present in the foul condensate will be captured with the SOG and combusted with 98% control at the combination boilers.

Methanol emissions from the ASB are based on the NCASI Form XIII calculation spreadsheet using the average ASB influent and effluent methanol concentrations from all data collected during 2021 and 2022 and the average zone treatment profiles from 2021 and 2022 NESHAP Subpart S performance tests. The methanol concentration in the stripped condensate from the backup stripper is based on the theoretical maximum methanol collection (16 lb/ODTP) in the foul condensate and an expected 45% removal efficiency from the backup stripper operating in "TRS mode."

Acetaldehyde, methyl ethyl ketone, and propionaldehyde are assumed to be emitted at the same ratio to methanol as compared to the baseline. Emissions of TRS compounds that are also VOC are calculated using WATER9 with the design foul condensate loadings of TRS compounds being reduced by 98% in the backup stripper operating in "TRS mode" before entering the ASB.

Hydrogen Sulfide and Total Reduced Sulfur Compounds

To calculate TRS and H_2S emissions from backup stripper SOG combustion, it is conservatively assumed that the design foul condensate sulfur loading will be captured with the SOG and only 99% will be converted to SO₂ at the combination boilers.

Projected emissions of TRS compounds (excluding H_2S) from the ASB are based on WATER9. Projected emissions of H_2S from the ASB are calculated based on H2SSIM. Both WATER9 and H2SSIM emissions are based on the average ASB influent concentrations from data collected during 2021 and 2022 TRS testing and the design foul condensate sulfur loadings of TRS compounds being reduced by 98% in the backup stripper operating in "TRS mode."

No Stripper Online Scenario

The post-Project emissions also account for brief periods when the new stripper may need to go offline and the backup stripper brought into service. During these transition periods, untreated foul condensate will be discharged through the Hardpipe to the ASB. While in the Hardpipe prior to entering the ASB, the TRS compounds will be chemically oxidized to reduce the potential for odors from the ASB when operating during these brief transition periods, which are expected to be less than 2% of the annual operating time.

When there is no SOG being created by either stripper, there are no emissions of SO₂, NOx, or CO corresponding to the brief periods when all foul condensate is treated in the ASB.

Volatile Organic Compounds, Hydrogen Sulfide, and Total Reduced Sulfur Compounds

Methanol emissions from the ASB are based on NCASI Form XIII calculation spreadsheet using the average ASB influent and effluent methanol concentrations from all data collected during 2021 and 2022 and the average zone treatment profiles from 2021 and 2022 NESHAP Subpart S performance tests. The methanol concentration in the foul condensate is based on the maximum methanol collection (16 lb/ODTP).

Acetaldehyde, methyl ethyl ketone, and propionaldehyde are assumed to be emitted at the same ratio to methanol as compared to the baseline.

Emissions of TRS compounds are calculated using WATER9 and H2SSIM (H_2S) with the design foul condensate sulfur loadings of TRS compounds being adjusted based on NCASI Technical Bulletin No. 949 to account for the effects of the chemical oxidant, consistent with how baseline actual emissions are calculated.

- H₂S concentrations in the Hardpipe were reduced by 99%.
- DMS concentrations in the Hardpipe were reduced by 90%.
- MMC concentrations in the Hardpipe were reduced by 99% and assumed to be converted to DMDS.
- DMDS concentrations are assumed not reduced by chemical oxidant. DMDS concentrations of the Hardpipe were increased to account for the MMC oxidized into DMDS.

PAE and PTE Independent from Stripper Operating Scenario

LVHC Collection System

As stated previously, the No. 3 Recovery Furnace is expected to provide LVHC combustion at least 75% of the operating time. When the No. 3 Recovery Furnace cannot receive the LVHC gases, the LVHC gases will then be combusted in the combination boilers the remaining 25% of the time. The emissions from combusting LVHC gases are unaffected by the stripper operating scenario. PAE of SO₂, H₂S, and TRS are based on 2021 stack testing. The VOC PAE from the LVHC collection system are based on the post-project Columbia VOC emissions factors presented Appendix C – Tab A of the July 2019 and April 2020 permit applications approved by SCDHEC in Construction Permit DF.

No. 3 Recovery Furnace LVHC Ignitor

The No. 3 Recovery Furnace will also have a 1 MMBtu/hr natural gas-fired LVHC ignitor to be used when the black liquor load is less than 50%. The natural gas ignitor is expected to be required no more than 15% of the time the No. 3 Recovery Furnace is in operation. PAE of products of combustion from the ignitor are based on AP-42 emissions factors.

Steam for New Stripper and Backup Stripper

The steam requirements for the new stripper and the backup stripper were provided by the vendor and adjusted for the thermal efficiency of the combination boilers firing natural gas and No. 6 fuel oil. The projected fossil fuel usage reflects the highest No. 6 fuel oil usage occurring during the previous 10 years. The highest fuel oil usage was during calendar year 2014 and accounted for 18.4% of the fossil fuel heat input. The PAE and PTE of products of combustion are based on AP-42 emissions factors.

3.2.2.3.3 PSD Non-Applicability

The changes in emissions from the Mill as a result of the Project were compared to the significant emission rates in Standard No. 7, paragraph (B)(49). Based on the emissions calculations described above, presented in Appendix B, and summarized in Table 3-3, the Project is not subject to the PSD permitting requirements in paragraphs (J) through (R) of Standard No. 7.

Pollutant ^(A)	PM	PM10	PM25	NOX	SO2	со	H2504	TRS	VOC	Pb	H ₂ S	Total COze
Baseline Actual Emissions	1.26	1,16	1.09	132	770	27.1	1.28	13.4	249	1.24E-04	3.77	13,904
Projected Actual Emissions	13.4	10.4	8.45	148	629	64.2	2.43	15.6	248	2.08E-03	5.69	48,629
Net Emissions Changes (PAE - BAE)	12.2	9.28	7.36	16.1	-141.35	37.1	1.15	2.18	-1.4	1.95E-03	1.92	34,725
PSD Significant Emissions Rates	25	15	10	40	40	100	7	10	40	0.6	10	75,000
PSD Significant?	No	No	No	No	No	No	No	No	No	No	No	No

3-24

Table 3-3 Summary of PSD Applicability for the Project (tpy)

A - HF is not emitted from new, modified, or affected emissions units.

3.2.2.4 Standard No. 7 – Prevention of Significant Deterioration – Air Dispersion Modeling Requirements

Standard No. 7 also includes PSD air quality increments that apply to all increases and decreases in PSD pollutant emissions following the PSD minor source baseline date. In York County the minor source baseline dates are December 1, 1981, for PM10 and March 3, 2017 for PM2.5. This Application does not trigger PSD review as discussed above; therefore, the project is unlikely to interfere with attainment or maintenance of State or Federal ambient air quality standards.

3.2.2.5 Standard No. 8 – Toxic Air Pollutants

SCDHEC Standard No. 8 regulates emissions of air toxics from new and existing sources. The Standard does not apply to fuel burning sources that burn only virgin fuel or specification used oil. Section I.D(1) of Standard No. 8 exempts sources subject to a Federal NESHAP. The Mill is subject to the Federal NESHAP for the pulp and paper source category (Subparts S and MM), industrial boilers (Subpart DDDDD), and reciprocating internal combustion engines (Subpart ZZZZ). Section I.D(2) of Standard No. 8 exempts non-NESHAP sources after a facility-wide residual risk analysis is completed. U.S. EPA published the results of facility-wide residual risk analyses for Subpart S sources on December 27, 2011, and for Subpart MM sources on December 30, 2017. The residual risk analyses completed by U.S. EPA concluded that there was no unacceptable risk from pulp and paper mills. Therefore, all emissions sources of HAP at New-Indy Catawba are exempt from Standard No. 8 under sections I.D(1) and/or I.D(2).

New-Indy Catawba emits two South Carolina toxic air pollutants (TAP) that are not listed HAP, H_2S and methyl mercaptan. Both compounds are generated by the Kraft pulping process and are components of TRS gases that are contained in LVHC and HVLC gases and in the pulping process condensates. Section I.D(3) allows sources to request an exemption for non-HAPs controlled by MACT controls to reduce HAP. This Project will improve emissions of H_2S and MMC from the Mill. However, because SCDHEC recently modeled emissions of H_2S and MMC and to demonstrate that emissions from these two TAPs following the Project remain below the maximum allowable ambient concentrations (MAAC) in Standard No. 8, the Mill has included an updated modeling demonstration in Appendix C.

The updated modeling analysis for TRS (as H_2S), H_2S and MMC in Appendix C focused on the changes to the emissions from the aerated stabilization basin. The TRS, H_2S and MMC emissions from the No. 3 Recovery furnace were not updated due to the insignificant maximum modeled concentrations from the No. 3 Recovery Furnace when compared to the overall maximum modeled concentrations for the Mill. The TRS (as H_2S) maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.12% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled concentrations from the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled for the No. 3 Recovery Furnace were approximately 0.08% of the maximum modeled for the

concentrations from the Mill, and the TRS (as H_2S) maximum concentrations from the No. 3 Recovery Furnace were approximately 0.04% of the maximum mill concentrations.

3.2.3 Regulation 61-62.60: South Carolina Designated Facility Plan and New Source Performance Standard

Regulation 61-62.60 incorporates the 40 CFR Part 60 Subparts by reference. Refer to Section 3.1.1 for a discussion of 40 CFR Part 60.

3.2.4 Regulation 61-62.61 and 61-62.62: National Emission Standards for Hazardous Air Pollutants

Regulation 61-62.61 incorporates the 40 CFR Part 61 Subparts by reference. Refer to Section 3.1.2 for a discussion of the non-applicability of 40 CFR Part 61. Regulation 61-62.63 incorporates the 40 CFR Part 63 Subparts by reference. Refer to Section 3.1.2 for a discussion of applicability of 40 CFR Part 63.

3.2.5 Regulation 61-62.70 – Title V Operating Permit Program

Refer to Section 3.1.6 for discussion of the TVOP Program.

3.3 PROVISIONS OF THE SCDHEC CONSENT ORDER AND EPA CONSENT DECREE

This section addresses the provisions of the November 23, 2022 SCDHEC Consent Order and Part I of Appendix A of the November 16, 2022 EPA Consent Decree.

3.3.1 November 23, 2022 SCDHEC Consent Order

Items 4 through 6 of the Consent Order require that New-Indy Catawba:

- Install, operate, and maintain a primary stripper that is adequately sized to collect and treat all foul condensate streams in accordance with applicable state and federal air quality regulations. *The proposed new stripper will be sized at 850 gpm, which is designed to process foul condensates generated from producing the maximum pulp production of 2,700 ADTP/d, and New-Indy Catawba will operate the unit in accordance with applicable state and federal air quality regulations.*
- The primary stripper shall use low-pressure steam and must be designed for both methanol and sulfur compound removal with the off gases being treated in the recovery boilers to absorb the sulfur compounds in the stripper off gas. The proposed new stripper will utilize 60 pounds per square inch gauge (psig) steam. *The new stripper off-gases and SRL methanol will be*

incinerated in the No. 2 or 3 Recovery Furnace, with the exception of when the SRL system is unavailable (5% of the operating time of the new stripper).

- Complete preliminary engineering and submit a construction permit application for the primary stripper within one hundred and twenty (120) days of the execution of this order. *Preliminary engineering is complete and this application is being submitted by March 23, 2023.*
- New-Indy must optimize, operate, and maintain the existing stripper at its current design capacity to allow it to be operated independently of the primary stripper. To optimize the existing stripper at its current design, it will be operated in "TRS mode" to remove 98% of the TRS and approximately 45% of the methanol from the foul condensate.
- The following required events will be completed in the future:
 - Order the primary stripper within 30 days of submitting the application for the air construction permit.
 - Within 30 days of receiving the air construction permit, New-Indy Catawba must start civil engineering preparation.
 - Within 30 days of receiving the primary stripper, New-Indy Catawba must start installation and testing.
 - New-Indy Catawba must complete startup operations and place the primary stripper into operation no later than June 30, 2025.
 - New-Indy shall operate its steam stripper system, comprised of the primary stripper and the existing stripper, in accordance with all applicable state and federal air quality regulations
 - In the event the stripping system is out of service and foul condensate must be discharged to the ASB, New-Indy Catawba must use automated control of addition of a chemical oxidant, hydrogen peroxide, to treat the unstripped foul condensate prior to discharging into the ASB to maintain a rolling 90-minute average ORP of the foul condensate above 0 millivolts.
 - New-Indy Catawba must notify SCDHEC at least 48 hours prior to any planned downtime and within 24 hours of unplanned downtime for which the primary stripper will not be operational (and for the existing stripper when it should be operating but will not be).
 - New-Indy Catawba must submit reports to the Department regarding the implementation of the Consent Order to NewIndyOrderReports@dhec.sc.gov. For twelve consecutive months after execution of this order, the reports shall be submitted monthly on the 1st business day of the month. Thereafter, reports shall only be submitted every three months on the 1st business day of the month until the order terminates.

3.3.2 November 16, 2022 EPA Consent Decree

Item I(a) of Appendix A

Item I(a) of Appendix A of the Consent Decree contains requirements related to the uptime and monitoring of the foul condensate steam stripper at the Mill.

- New-Indy Catawba will operate their foul condensate treatment system (inclusive of the new and existing steam strippers) during all times that unbleached kraft pulp is being produced and foul condensate is being generated at the Mill.
- During periods the new steam stripper is experiencing downtime the existing steam stripper will be used.
- Periods of downtime in which both strippers are down will not exceed 576 hours for the first year and 460 hours annually thereafter.
- Peroxide will be added to the non-stripped condensate during the transition to the existing steam stripper and will continue to be added throughout the period in which the existing steam stripper is in operation.
- The Mill will notify the necessary authorities forty-eight (48) hours prior to any scheduled downtime and within twenty-four (24) hours of any unscheduled downtime and will operate both steam strippers according to 40 CFR Part 63, Subpart S.

Item I(b) of Appendix A of the Consent Decree

Item I(b) of Appendix A of the Consent Decree covers the maintenance, operation, and calibration of the system used to treat the unstripped foul condensate by the Mill. The Mill's foul condensate treatment system (inclusive of the new equipment to be installed with this application) will be capable of continuously measuring the oxidation reduction potential (ORP) of the foul condensate, automatically controlling the dosage of hydrogen peroxide to maintain a rolling ninety-minute average of the ORP of the foul condensate above 0 millivolts (mV) before it is discharged to the ASB, and treating the maximum amount of foul condensate produced when both steam strippers are down and when untreated foul condensate is discharged to the Hardpipe.

Item I(c) of Appendix A of the Consent Decree

Item I(c) of Appendix A of the Consent Decree contains recordkeeping requirements for data obtained by the ORP monitoring system used by the Mill. The Mill will maintain continuous records of the ORP monitoring system used by the Mill and will provide data to U.S. EPA upon request.

Item I(d) of Appendix A of the Consent Decree

Item I(d) of Appendix A of the Consent Decree includes reporting requirements for the ORP monitoring system used by the Mill. When untreated foul condensate is discharged to the Hardpipe, New-Indy Catawba will include the date, time, and value of any instance of a rolling ninety-minute average of the ORP falling below 0 mV in the Mill's semi-annual report for the previous six months.

APPENDIX A -PERMIT APPLICATION FORMS

Bureau of Air Quality Construction Permit Application Page 1 of 9

RECEIVED

MAR 23 2023

BAQ PERMITTING

SECTION 1 - FACILITY IDENTIFICATION

SC Air Permit Number (8-digits only)	Application Date			
(Leave blank if one has never been assigned)				
2440 - 0005	March 2023			
Facility Name/Legal Identity (This should be the official legal name under which the facility is owned/operated and				

should be consistent with the name registered with the S.C. Secretary of State's office, as applicable.) New-Indy Catawba LLC

Facility Site Name (Optional) (*Please provide any alternative or additional identifier of the facility, such as a specific plant identifier (e.g., Columbia plant) or any applicable "doing business as" (DBA) identity. This name will be listed on the permit and used to identify the facility at the physical address listed below.*)

Facility Federal Tax Identification Number (Established by the U.S. Internal Revenue Service to identify a business entity) 83-1904423

REQUEST TYPE (Check all that apply)

Exemption Request:

Complete Section 1 and attach documentation to support exemption request.

Construction Application:

Minor New Source Review Project

Synthetic Minor Project

□ Prevention of Significant Deterioration Project

🗆 112(g) Project

Expedited Review Request:

If checked, include Expedited Form D-2212 in the construction application package.

Construction Permit Modification:

Provide the construction permit ID (e.g. CA, CB, etc.) for which modification is requested:

Application Revision:

CONSTRUCTION PERMIT APPLICATION FORMS BEING REVISED				
(Amended construction permit forms must be filled out completely and attached to this modification request.)				
Form #	Date of Original Submittal	Brief Description of Revision		
D-2566	N/A	N/A		
D-2573	N/A	N/A		

FACILITY PHYSICAL ADDRESS				
Physical Address: 5300 Cureton Ferry Road County: York				
City: Catawba State: SC Zip Code: 29704				
Facility Coordinates (Facility coordinates should be based at the front door or main entrance of the facility)				
Latitude: 34°50′37″N	Longitude: 80°	53'25''W		

Bureau of Air Quality Construction Permit Application Page 2 of 9

FACILITY'S PRODUCTS / SERVICES				
Primary Products / Services (List the primary product and/or se	rvice)			
Linerboard / Pulp Manufacturing				
Primary <u>SIC Code</u> <i>(Standard Industrial Classification Codes)</i> 2631	Primary <u>NAICS Code</u> (North American Industry Classification System) 322130			
Other Products / Services (List other products and/or services)				
Other SIC Code(s):	Other NAICS Code(s):			

PROJECT DESCRIPTION

Project Description (What, why, how, etc.): Installation of a new steam stripper system to treat foul condensate prior to being recycled to the Brownstock washers. The new steam stripper will include a new stripper feed tank, new methanol tank, new hot water tank, and a new methanol rectification condenser. The rectified methanol will be burned in the recovery furnaces with the black liquor. The LVHC gases from the methanol condenser system, stripper feed tank, and methanol tank will be combusted in the No. 3 Recovery Furnace or back-up in the Nos. 1 or 2 Combination boilers. The hot water tank is not expected to be a source of air emissions. The existing steam stripper will serve as a backup to the new steam stripper. When both new and backup strippers are out of service, the condensate will be directed to the hard pipe with chemical oxidation prior to being treated in the aerated stabilization basin.

AIR PERMIT FACILITY CONTACT					
(Person listed will be in our files as the point of	(Person listed will be in our files as the point of contact for all air permitting related questions and will receive all air permitting notifications.)				
Title/Position: Sr. Environ. Engineer	Salutation: Mr.	First Name: Bob	Last Name: Tourville		
Mailing Address: P.O. Box 7					
City: Catawba		State: SC	Zip Code: 29704		
E-mail Address: bob.tourville@newindy	cb.com	Primary Phone No.: (803) 981-8009	Alternate Phone No.:		

The signed permit will be e-mailed to the designated Air Permit Contact.			
If additional individuals need copies of the permit, please provide their names and e-mail addresses.			
Name E-mail Address			
Steven Moore	smoore@all4inc.com		

CONFIDENTIAL INFORMATION / DATA

Is <u>confidential information</u> or data being submitted under separate cover? 🔀 No 🗌 Yes*

*If yes, submit ONLY ONE COMPLETE CONFIDENTIAL APPLICATION, with original signature, along with the public version of the application.

CO-LOCATION DETERMINATION

Are there other facilities in close proximity that could be considered collocated? 🔀 No 🗌 Yes*

If yes, list potential collocated facilities, including air permit numbers if applicable:

*If yes, please submit collocation applicability determination details in an attachment to this application.

Bureau of Air Quality Construction Permit Application Page 3 of 9

OWNER OR OPERATOR					
Title/Position: Technical Manager	Salutation: Mr.	First Name: Charles	Last Name: Cleveland		
Mailing Address: P.O. Box 7		• 			
City: Catawba		State: SC	Zip Code: 29704		
E-mail Address: pete.cleveland@new-indycb.com		Primary Phone No.: 803- 981-8000	Alternate Phone No.:		
	OWNER OR OPE	RATOR SIGNATURE	·		
I certify, to the best of my knowledge	and belief, that no	applicable standards and/or re	gulations will be contravened		
or violated. I certify that any appl	ication form, suppo	orting documentation, report,	or compliance certification		

submitted in this permit application is true, accurate, and complete based on information and belief formed after reasonable inquiry. I understand that any statements and/or descriptions, which are found to be incorrect, may result in the immediate revocation of any permit issued for this application.

Signature of Owner or Operator

APPLICATION PREPARER (if other than Professional Engineer below)					
Title/Position:	Senior	Managing	Colutation: Mr	First Names Staven	Last Name: Maero
Consultant Salutation: Mr.		First Name. Steven	Last Name. Woore		
Mailing Address	Mailing Address: 630 Davis Drive, Suite 203				
City: Durham State: NC Zip Code: 27560					
E-mail Address: smoore@all4inc.com Pho				Phone No.: (919) 234-5981	Cell No.: (864) 616-4711

PROFESSIONAL ENGINEER INFORMATION					
Consulting Firm Name: ALL4 LLC SC Certificate of Authority License No.: 6409					
Title/Position: PE	Salutation: Ms.	First Name: Sheryl Last Name: Watkins			
Mailing Address: 300 Chastain Center Bl	vd, Suite 395				
City: Kennesaw State: Georgia Zip Code: 30144					
E-mail Address: swatkins@all4inc.com	Phone No.: (678) 293-9428	Cell No.: (386) 503-0266			
SC License/Registration No.: 34347					

PROFESSIONAL ENGINEER SIGNATURE

I have placed my signature and seal on the engineering documents submitted, signifying that I have reviewed this construction permit application as it pertains to the requirements of *South Carolina Regulation 61-62, Air Pollution Control Regulations and Standards*.

end Watkins 3-20-23

Signature of Professional Engineer

This form is subject to Retention Schedule 16303.

2023

Bureau of Air Quality Construction Permit Application Page 4 of 9

	San See	EQUIPMENT / PROCESS INFORMATION			
Equipment ID/ Process ID	Action	Equipment / Process Description	Maximum Design Capacity (Units)	Control Device ID(s)	Emission Point ID(s)
9801	Add Remove Modify Existing	Existing Steam Stripper	850 gallons/minute	9820, 2605, 3705, 2901	2610S2, 2610S1, Fugitive
9802	Add Remove Modify Existing	Hardpipe	850 gallons/minute	2901	Fugitive
9803	Add Remove Modify Existing	New Steam Stripper (Methanol Condenser)	6.5 gallons/minute	5260, 5260C, 2605, 3705, 5105	5105S, 2610S2, 2610S1
9803	Add Remove Modify Existing	New Steam Stripper (Condensed Methanol)	6.5 gallons/minute	2505, 5105	2505S, 5105S
9803	Add Remove Modify Existing	New Steam Stripper (Stripper Off Gases)	850 gallons/minute	9820, 2605, 3705	2610S2, 2610S1
9804	Add Remove Modify Existing	New Steam Stripper Feed Tank	80,400 gallons	5260, 5260C, 5105, 2605, 3705	261052, 2610S1, 5105S
9805	Add Remove Modify Existing	New Steam Stripper Rectified Liquid Methanol Tank	1,300 gallons	5260, 5260C, 5105, 2605, 3705	2610S2, 2610S1, 5105S

Bureau of Air Quality Construction Permit Application Page 5 of 9

	CONTROL DEVICE INFORMATION							
Control Device ID	Action	Control Device Description	Maximum Design Capacity (Units)	Inherent/ Required/ Voluntary	Pollutants Controlled (Include CAS #)	Capture Efficiency	Destruction/ Removal Efficiency	Emission Point ID(s)
2505	Add Remove Modify Existing	No. 2 Recovery Furnace	412,140 tons BLS/year	Required	See Appendix B/Narrative		25055	
2605	Add Remove Modify Existing	No. 1 Combination Boiler	405 MMBtu/hr	Required	See Ap	See Appendix B/Narrative		261052
2901	Add Remove Modify Existing	Aerated Biotreatment (Aerated Stabilization Basin)	N/A	Required	See Ap	See Appendix B/Narrative		Fugitive
3705	Add Remove Modify Existing	No. 2 Combination Boiler	720 MMBtu/hr	Required	See Appendix B/Narrative		2610S1	
5105	Add Remove Modify Existing	No. 3 Recovery Furnace	744,600 tons BLS/year	Required	See Appendix B/Narrative		51055	
9820	Add Remove Modify	Stripper Off Gases Collection System	2,700 ADTP/day	Required	See Appendix B/Narrative		261051, 261052	
5260	Add Remove Modify Existing	LVHC Collection System	2,700 ADTP/day	Required	See Ap	pendix B/Na	arrative	2610S1, 2610S2, 5105S
5260C	Add Remove Modify Existing	LVHC Collection System Caustic Scrubber	2,700 ADTP/day	Required	See Ap	pendix B/Na	arrative	2610S1, 2610S2, 5105S

Bureau of Air Quality Construction Permit Application Page 6 of 9

Check Box for information addressed	Required Information		
	Source identification and emissions:		
\boxtimes	Name of each source, process, and control device.		
\boxtimes	 Assign each source an Equipment ID. The IDs must match the IDs listed in Section 2 of this application. 		
\boxtimes	Assign an Emission Point ID for each source.		
\boxtimes	Assign a Control Device ID for each control device.		
\boxtimes	List each pollutant the source will emit.		
\boxtimes	 List the Uncontrolled, Controlled, and PTE emissions for each source or equipment in lb/hr and tons/year. 		
\boxtimes	• Emission rates for each pollutant should be totaled and listed in lb/hr and tons/year.		
\boxtimes	• Provide the CAS# for each Hazardous Air Pollutant (HAP) and/or Toxic Air Pollutant (TAP).		
	Information to support emission rates:		
\boxtimes	Sample calculations.		
	 Emission factors. Include the source, revision date, specific table and/or chapters. Include source test data if factors were derived from source testing. 		
\boxtimes	Explanation of assumptions, bottlenecks, etc.		
	 Source test information: A copy of the source test results may be requested. If the test results are not included in the application, the application should cite whether this was a DHEC approved test, and if not, explain where the test was conducted and other identifying information. 		
	Manufacturer's data.		
	Vendor guarantees that support control device efficiencies.		
\boxtimes	New Source Review (NSR) analysis.		
\boxtimes	Other (e.g. example particle size analysis)		

Existing (Permitted) Facilities									
Check Box	Required Information	Location in Application							
\boxtimes	 Facility-wide emissions prior to construction/modification: Include an explanation if these emissions do not match the facility- wide emissions submitted in the last application. 	Appendix B							
\boxtimes	 Facility-wide emissions after construction/modification: Include net change, if applicable. 	Appendix B							
	As applicable for the construction/ modification:								
	Name of each source.	See Equipment/Process Information Above							

DHEC 2566 (03/2021)

Bureau of Air Quality Construction Permit Application Page 7 of 9

1 S 24	Existing (Permitted) Facilities	
Check Box	Required Information	Location in Application
	 Assign each source an Equipment ID. The IDs must match the IDs listed in Section 2 of this application or on your current construction / operating permit. 	See Equipment/Process Information Above
	Assign a Control Device ID for each control device.	See Equipment/Process Information Above
	Assign an Emission Point ID for each source.	See Equipment/Process Information Above
\square	List each pollutant the source will emit.	Appendix B
	 List the Uncontrolled, Controlled, and PTE (if applicable) emissions for each source or equipment. 	Appendix B
	 Emission rates for each pollutant should be totaled and listed in lb/hr and tons/year. 	Appendix B
	Provide the CAS# for each HAP and/or TAP.	Appendix B
	Information to support facility-wide emission rates:	
\boxtimes	Sample calculations.	Appendix B
	 Emission factors. Include the source, revision date, specific table and/or chapters. Include source test data if factors were derived from source testing. 	Narrative, Appendix B
\boxtimes	Explanation of assumptions, bottlenecks, etc.	Narrative
	 Source test information: A copy of source the test results may be requested. If the results are not included in the application, the application should cite whether this was a DHEC approved test and if not, explain where the test was conducted and other identifying information. 	Appendix B
	Manufacturer's data.	
	 Vendor guarantees that support control device efficiencies. 	
	NSR analysis.	Narrative
\boxtimes	Other (please explain)	Appendix B

Bureau of Air Quality Construction Permit Application Page 8 of 9

Check Box	State and Federal Air Pollution Control Regulations and Standards
\boxtimes	S.C. Regulation 61-62.1 Section II.E Synthetic Minor Construction Permits
\boxtimes	S.C. Regulation 61-62.5 Air Pollution Control Standards
	Standard No. 1 Emissions from Fuel Combustion
	Standard No. 2 Ambient Air Quality
\boxtimes	Standard No. 3 Waste Combustion and Reduction (state only)
	Standard No. 4 Emissions from Process Industries
\boxtimes	(Note: If Section VIII of this Standard applies, include the process weight rate (PWR) in ton per
	hour for each applicable source or process.)
	Standard No. 5 Volatile Organic Compounds
	 Standard No. 5.2 Nitrogen Oxides Lowest Achievable Emission Rate
\boxtimes	Standard No. 7 Prevention of Significant Deterioration (PSD)
	Standard No. 7.1 Nonattainment New Source Review (NSR)
\boxtimes	Standard No. 8 Toxic Air Pollutants (TAPs) (state only)
	S.C. Regulation 61-62.6 Control of Fugitive Particulate Matter
\boxtimes	S.C. Regulation 61-62.60 and 40 CFR Part 60 New Source Performance Standards (NSPS)
\boxtimes	S.C. Regulation 61-62.61 and 40 CFR Part 61 National Emission Standards for Hazardous Air Pollutants (NESHAP)
X	S.C. Regulation 61-62.63 and 40 CFR Part 63 National Emission Standards for Hazardous Air Pollutants
	(NESHAP) for Source Categories
\square	40 CFR Part 64 Compliance Assurance Monitoring (CAM)
	S.C. Regulation 61-62.68 and 40 CFR Part 68 Chemical Accident Prevention Provisions
\boxtimes	S.C. Regulation 61-62.70 and 40 CFR Part 70 Title V Operating Program
	Other S.C. Air Pollution Control Regulations, as applicable.
	Other Federal Air Pollution Control Regulations, as applicable.
	40 CFR 98 Green House Gas (GHG) emissions
	(Note: Quantify GHG emissions, if S.C. Regulation 61-62.5, Standard No. 7 or S.C. Regulation 61-62.5,
	Standard No. 7.1 is triggered.)

Bureau of Air Quality Construction Permit Application Page 9 of 9

Check Box	Completeness Checklist:										
	Applicability Determination:										
\boxtimes	• Is this regulation applicable, reasonably applicable, potentially applicable, or not applicable?										
\boxtimes	Is the basis for the applicability determination explained?										
	Affected Sources:										
\boxtimes	Is the name and identification of each emission source or process included?										
	Compliance Demonstration:										
\boxtimes	How will compliance be demonstrated?										
\boxtimes	 Are specific methods or activities to be utilized by the facility to demonstrate compliance with each specific limitation and/or requirement provided? 										
\boxtimes	Are control devices and control device requirements included?										
\boxtimes	 Are monitoring, recordkeeping, and reporting requirements necessary to demonstrate compliance included? 										
	Regulatory Citations:										
\boxtimes	Are the regulatory citations identified?										

Bureau of Air Quality Emission Point Information Page 1 of 4

A. APPLICATION IDENTIFICATION									
. Facility Name: New-Indy Catawba LLC									
2. SC Air Permit Number (if known; 8-digits only): 2440 - 0005	SC Air Permit Number (if known; 8-digits only): 2440 - 0005 3. Application Date: March 2023								
4. Project Description: New Condensate Stripper Permit Application									
Are other facilities collocated for air compliance? Yes No 6. If Yes, provide permit numbers of collocated facilities:									

B. AIR CONTACT											
Consulting Firm Name (if applicable):											
Title/Position: Senior Environmental Engineer	Salutation: Mr.	First Name: Bob	Last Name: Tourville								
Mailing Address: P.O. Box 7			· · · · · · · · · · · · · · · · · · ·								
City: Catawba		State: SC	Zip Code: 29704								
-mail Address: bob.tourville@new-indycb.com Phone No.: (803) 981-8009 Cell No.:											

C. EMISSION POINT DISPERSION PARAMETERS												
Source data requirements are based on the appropriate source classification.												
 Each emission point is classified as a point, flare, area, area circular, area polygon, volume, open pit, line, or buoyant line source. 												
Contact the Bureau of Air Quality for clarification	tion of data requirements.											
 Include sources on a scaled site map. Also, a 	picture of area or volume sources would be helpful	but is not required.										
 A user generated document or spreadsheet r 	nay be substituted in lieu of this form provided all o	f the required emission point parameters are submitted in										
the same order, units, etc. as presented in th	ese tables.											
Abbreviations / Units of Measure:												
 AGL = Above Ground Level 	 °F = Degrees Fahrenheit 	• K = Kelvin										
 BTU/hr = British Thermal Unit per hour 	• ft = feet	• m = meters										
• ° = Degrees	 ft/s = feet per second 	UTM = Universal Transverse Mercator										

Bureau of Air Quality Emission Point Information Page 2 of 4

Reminder: For all Emission Points, list the unique Emission Point ID for that source. Use the same emission point ID as shown in the current permit and provided in the last modeling submittal (as applicable). If the emission point ID has been changed from what was previously submitted, please list the current emission point ID with the old emission point ID in parenthesis

	D. POINT SOURCE														
Emission Point ID	Description /Name	UTM Coordinates (NAD83)		Release Height	Release Height Temp	it Exit	Inside	Discharge	Rain	Distance To Nearest	Building				
	Description/Name	Easting (m)	Northing (m)	AGL (ft)	(°F)	(ft/s)	(ft)	tion	(Y/N)	Property Boundary (ft)	Height (ft)	Length (ft)	Width (ft)		
261051	No. 2 Combination Boiler Stack	510039.32	3855689.18	228	364	47.2	10.0	Vert.	N	3,937	N/A	N/A	N/A		
261052	No. 1 Combination Boiler Stack	510020.32	3855678.18	228	405	62.3	10.0	Vert.	N	3,937	N/A	N/A	N/A		
25055	No. 2 Recovery Furnace	510095.85	3855743.58	195	365	99.1	7.0	Vert.	N	3,953	N/A	N/A	N/A		
5105S	No. 3 Recovery Furnace	510032.37	3855802.28	225	342	61.7	10.5	Vert.	N	4,134	N/A	N/A	N/A		

				E. FLAF	RE SOURCE						- W	
Emission		UTM Coordinates (NAD83)		Release	Heat	Exit	Exit	Heatlass	Distance To Nearest	Building		
Point ID	Description/Name	Easting (m)	Northing (m)	Height AGL (ft)	Release Rate (BTU/hr)	Velocity (ft/s)	Temp. (°F)	Fraction	Property Boundary (ft)	Height (ft)	Length (ft)	Width (ft)

				F. AREA SO	DURCE	Los de la compañía		6. A	
Emission	Description/Name	UTM Coordinates (NAD83)		Release Height AGL Easte	Easterly Length	Northerly Length	Angle From North	Initial Vertical Dimension σ_{τ}	Distance To Nearest Property Boundary
Point ID		Easting (m)	Northing (m)	(ft)	(ft)	(ft)	(°)	(ft)	(ft)

Bureau of Air Quality Emission Point Information Page 3 of 4

			G	AREA CIRCULAR	SOURCE			
Emission	Description (Name	UTM Coordinates (NAD83)		Release Height	Radius of Area	Number of	Initial Vertical	Distance To Nearest
Point ID	Description/Name	Easting (m)	Northing (m)	AGL (ft)	(ft)	Vertices	(ft)	(ft)

	H. AREA POLYGON SOURCE													
Emission Point ID	Description/Name	Description/Name UTM Coordinates (NAD83) Relea Easting-1 Northing-1 A		Release Height	Initial Vertical	Number of	Area	Distance To Nearest						
	Description/Marile			AGL (ft)	(ft)	Vertices	(ft²)	(ft)						
		(m)	(m)		(10)	- AL		((())						
Fugitive	Aerated Stabilization Basin (Zone 1)	510803.40	3856319.69	20	0	15	547,769	1,969						
Fugitive	Aerated Stabilization Basin (Zone 2)	510964.42	3856054.20	20	0	18	733,653	1,510						
Fugitive	Aerated Stabilization Basin (Zone 3)	511052.13	3855887.21	20	0	10	783,500	1,180						

	I. VOLUME SOURCE														
Emission	Description (Name	UTM Coordinates (NAD83)		Release Height	Physical	Initial Horizontal	Physical Vertical	Initial Vertical	Distance To Nearest Property						
Point ID	Description/warne	Easting (m)	Northing (m)	AGL (ft)	Dimension (ft)	Dimension σ _y (ft)	Dimension (ft)	(ft)	Boundary (ft)						

				J. OPEN PIT SOU	IRCE			
Emission	Description (Name	UTM Co (NA	ordinates (D83)	Release Height	Easterly Length	Northerly Length	Pit Volume	Angle From North
Point ID	Description/Name	J. OPEN PIT SOURCE UTM Coordinates (NAD83) Release Height AGL (ft) Easterly Length (ft) Northerly Length (ft) Pit Volume (ft ³) Angle From (°) Image: Description of the second sec	(°)					

Bureau of Air Quality Emission Point Information Page 4 of 4

		a sub line i	and the second	K. LINE SOL	JRCE					
Emission	Description/Name		UTM Coo (NAD	rdinates 083)		Release Height	Line Length	Line Width	Initial Vertical	
Point ID	Description/Name	Start Easting (m)	Start Northing (m)	End Easting (m)	End Northing (m)	(ft)	(ft)	(ft)	(ft)	

	L. BUOYANT LINE SOURCE (must complete Line Source and Buoyant Line Source tables)														
Emission Point ID	Description/Name	Average Building Length (ft)	Average Building Height (ft)	Average Building Width (ft)	Average Line Source Width (ft)	Average Building Separation (ft)	Average Buoyancy Parameter (m ⁴ /s ³)								

	M. EMISSION RATES														
Emission Point ID	Pollutant Name	CAS #	Emission Rate (lb/hr)	Same as Permitted? ⁽¹⁾	Controlled or Uncontrolled	Averaging Period									
261052,															
261051															
2505S		Refer to	Appendix B												
51055															
Fugitive															

(1) Any difference between the rates used for permitting and the air compliance demonstration must be explained in the application report.

APPENDIX B -EMISSIONS CALCULATIONS

NEW-INDY CATAWBA MILL STRIPPER PROJECT

	Operati	ing Time
Stripper Operating Scenario	%	hrs
New Stripper Online	90%	7,884.0
Backup Stripper Online	8%	700.8
No Stripper Online	2%	175.2

LVHC Control	Operating Time								
Operating Scenario	%	hrs							
RF3 Available for LVHC	75%	6,570.0							
LVHC to CB1/CB2	25%	2,190.0							

Summary of PSD Applicability (tons/year)

Pollutant(A)	PM	PM10	PM25	NO	SO ₂	СО	H2SO4	TRS	VOC	Pb	H ₂ S	Total CO2e
Baseline Actual Emissions	1.26	1.16	1.09	132	770	27.1	1.28	13.4	249	1.24E-04	3.77	13,904
Projected Actual Emissions	13.4	10.4	8.45	148	629	64.2	2.43	15.6	248	2.08E-03	5.69	48,629
Net Emissions Changes (PAE - BAE)	12.2	9.28	7.36	16.1	-141.35	37.1	1.15	2.18	-1.4	1.95E-03	1.92	34,725
PSD Significant Emissions Rates	25	15	10	40	40	100	7	10	40	0.6	10	75,000
PSD Significant?	No	No	No	No	No	No	No	No	No	No	No	No

A - HF is not emitted from new, modified, or affected emissions units,

SO2 EMISSIONS CALCULATIONS

	Stripper	Scenerio Ing Time		Operating (Configuration me		Con Operati	trois ng Time	Produc	tion Rate	Si Emission	02 1s Factor	Sulfur Capture ^C	SO2 En	nissions
Stripper Operating Scenario	*	hrs	Operating Configuration	*	hrs	Controls	*	hrs	Value	NOM	Ib/UOM	Reference	*	lb/hr	tpy
	2	2		BAS	ELINE ACTUAL	EMISSIONS (March 2021 - Februa	ry 2023)	3							12 12
Backup Stripper SOG ^A	91.4%	8,004.0	NA	100%	8,004.0	SOG to CB1/CB2	100.0%	8,004.0	1,426	ADTP/day	1.06	Stack Test	NA	63 1	252.5
IVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to CB1/CB2	100.0%	8,760.0	1,426	ADTP/day	1.97	Stack Test	NA	117.0	512.4
Backup Stripper Steam ^A	91.4%	8,004.0	Natural Gas ^{®.c}	97.9%	7.835.7	NA	100.0%	7,835.7	29.5	mm8tu/hr	6.00E-04	AP-42	NA	0.02	0.1
Backup Stripper Steam [*]	91.4%	8.004.0	No.6 Oil ^{8.6}	2.1%	168.3	NA	100.0%	168.3	28-1	mmBtu/hr	2.20E+00	AP-42	NA	61.9	5.2
SOZ BASELINE ACTUAL EMISSIONS (BA	E)														770.2
			and the second second	1000	PRO	JECTED ACTUAL EMISSIONS				The second se			and the second		
New Stripper Online	90.0%	7,884.0	SRL Online	95%	7,489.8	SRL Methanol to RF2/3	100.0%	7,489.8	2,700	ADTP/day	0.56	Vendor	99%	0.6	2.4
New Stripper Online	90.0%	7,884.0	SRL Online	95%	7,489.8	SRL LVHC to RF3	75.0%	5,617.4	2,700	ADTP/day	0.84	Vendor	99%	0.9	2.7
New Stripper Online	90.0%	7,884.0	SRL Online	95%	7,489.8	SRL LVHC to CB1/CB2"	25.0%	1,872.5	2,700	ADTP/day	0.84	Vendor	50%	47.2	44.2
New Stripper Online	90.0%	7,884.0	SRL Offline	5%	394.2	SOG to CB1/CB2	100.0%	394.2	2,700	ADTP/day	1.40	Vendor	0%	157.4	31.0
Backup Stripper Online	8.0%	700.8	NA	100%	700.8	SOG to CB1/CB2	100.0%	700.8	2,700	ADTP/day	1.40	Vendor	0%	157.4	55.1
No Stripper Online	2.0%	175.2	Foul Condensate to Hard Pipe	100%	175.2	Hydrogen Peroxide Addition	100.0%	175.2	NA	NA	NA	NA	NA	NA	NA
LVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to RF3	75.0%	6,570.0	2,700	ADTP/day	5.25	Stack Test	99%	5.9	19.4
LVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to CB1/CB2	25.0%	2,190.0	2,700	ADTP/day	5-25	Stack Test	50%	295-2	323.3
Recovery Furnace #3 LVHC Ignitor	75.0%	6,570.0	Natural Gas ¹	15.0%	985.5	NA	100.0%	985-5	1.0	mmBtu/hr	6-00E-04	AP-42	NA	0.00	0.0
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ^{0,7}	81.6%	6,433.3	NA	100.0%	6,433.3	96-8	mmBtu/hr	6-00E-04	AP-42	NA	0.06	0.2
New Stripper Steam - No. 6 Oil	90.0%	7,884.0	No.6 Oll ^{D.1}	18.4%	1,450.7	NA	100.0%	1,450-7	92-2	mmBtu/hr	2-20E+00	AP-42	NA	202-9	147-2
Backup Stripper Steam - Natural Gas	8.0%	700.8	Natural Gas ^{2,"}	81.6%	571.9	NA	100.0%	571.9	25.3	mmBtu/hr	6 00E-04	AP-42	NA	0 02	0.004
Backup Stripper Steam - No. 6 Oil	8.0%	700.8	No.6 Oil ^{D.F}	18.4%	128.9	NA	100.0%	128.9	24.1	mmBtu/hr	2.20E+00	AP-42	NA	53.1	3.4
SO2 PROJECTED ACTUAL EMISSIONS (P	AE)														628.84
					NET EN	AISSIONS CHANGE (PAE - BAE)					- 7192		3.2.2.2.		
NET EMISSIONS CHANGE (PAE - BAE)															-141.35

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Bolliers No. 1 and No. 2 during baseline.

C - Sulfur capture in recovery furnace >99, sulfur capture in LVHC scrubber 50%, sulfur conversion in combination bollers 99%

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor

G - 40% of TRS/H2S condensed into methanol and 60% of TRS/H2S vented Into LVHC System.

H - reserved

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor

				Foul	Methanol ⁶	LVHC ^G
				UNCTRL	UNCTRL	UNCTRL
				Ib/ADTP	Ib/ADTP	Ib/ADTP
TRS as S		MW	AHL	0.70	0.28	0.42
sulfur	s	32.065				
sulfur dioxide	SO2	64.064		1 40	0.56	0.84

H2504 EMISSIONS CALCULATIONS

	Stripper	Scenario Ing Time		Operating Configuration Time			Controls Operating Time		Production Rate		H2SO4 Emissions Factor		Sulfur Capture	H2504	missions
Stripper Operating Scenario	%	hrs	Operating Configuration	%	hrs	Controls	*	hns	Value	UOM	Ib/ADTP	Reference	*	lb/hr	tey
and the second s	20 10 0	· · · · · · · · · · · · · · · · · · ·	and a stream and	M	BASELINE ACT	TUAL EMISSIONS (March 202	1 - February 20	23)		<u></u>	10-00-01				11 10100 H
LVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to CB1/CB2	100,0%	8,760.0	1,426	ADTP/day	4,93E-03	NCASI Technical Bulletin 858, Table 10	NA	0.3	1,3
H2504 BASELINE ACTUAL EMISSIONS	(BAE)				S 22		- 22			20 U				-	1,3
						PROJECTED ACTUAL EMISSI	ONS								
LVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to RF3	75,0%	6,570,0	2,700	ADTP/day	4.93E-03	NCASI Technical Bulletin 858, Table 10	NA	0.55	1.82
LVHC Collection System	100%	8,760.0	NA	100%	8,760.0	LVHC to CB1/CB2	25.0%	2,190.0	2,700	ADTP/day	4.93E-03	NCASI Technical Builetin 858, Table 10	NA	0.55	0,61
H2504 PROJECTED ACTUAL EMISSION	IS (PAE)														2.43
			and the second second		N	ET EMISSIONS CHANGE (PAE	- BAE)		100		1.1	and a strend of			30 U.S.
NET EMISSIONS CHANGE (PAE - BAE)															1.15

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Bolliers No. 1 and No. 2 during baseline.

C - Sulfur capture in recovery furnace >99, sulfur capture in LVHC scrubber 50%, sulfur conversion in combination bollers 99%.

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor.

G - 40% of TRS/H2S condensed into methanol and 60% of TRS/H2S vented into LVHC System.

H - reserved

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor.

NOX EMISSIONS CALCULATIONS

	Stripper	Scenario ing Time		Oper	ating Ition Time		Cor	ntrois ing Time	Produc	tion Rate	N Emissio	OX ns Factor	Ammonia Increase ^C	NOX E	missions
Stripper Operating Scenario	%	hrs	Operating Configuration	*	hrs	Controls	*	hes.	Value	UOM	Ib/UOM	Reference	*	lb/hr	τργ
	#	14		BAS	LINE ACTUA	EMISSIONS [March 2021 - Februar	y 2023)		-	194		2.1	w		ni
Backup Stripper SOG ^A	91.4%	8,004.0	NA	100.0%	8,004.0	SOG to CB1/CB2	100%	8,004.0	1,426	ADTP/day	0.415	Columbia	NA	24.7	98.7
Backup Stripper Steam ^A	91.4%	8,004.0	Natural Gas ^{6,6}	97.9%	7,835.7	NA	100%	7,835.7	29.5	mm8tu/hr	2.80E-01	AP-42	NA	8.3	32.4
Backup Stripper Steam ^A	91.4%	8,004.0	No. 6 Oll ^{8,E}	2.1%	168.3	NA	100%	168.3	28.1	mm8tu/hr	3.13E-01	AP-42	NA	8.8	0.7
NOX BASELINE ACTUAL EMISSIONS															131.8
	100				PRO	DIECTED ACTUAL EMISSIONS	20.7.0								*
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489.8	SRL Methanol to RF2/3	100%	7,489.8	2,852	TBLS/day	1,500	Title V	1.0%	1.8	6.7
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to RF3 ⁶	75%	5,617.4	316.9	TBLS/day	1,500	Title V	1.0%	0.2	0.6
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to CB1/CB2 ⁹	25%	1,872.5	270.0	ADTP/day	0.415	Columbia	NA	4.7	4.4
New Stripper Online	90%	7,884.0	SRL Offline	5.0%	394.2	SOG to CB1/CB2	100%	394.2	2,700	ADTP/day	0.415	Columbia	NA	46.7	9,2
Backup Stripper Online	8%	700.8	NA	100.0%	700.8	SOG to CB1/CB2	100%	700,8	2,700	ADTP/day	0,415	Columbia	NA	46.7	16.4
No Stripper Online	2%	175.2	Foul Condensate to Hard Pipe	100.0%	175.2	Hydrogen Peroxide Addition	100%	175.2	NA	NA	NA	NA	NA	NA	NA
Recovery Furnace #3 LVHC Ignitor	75%	6,570.0	Natural Gas ¹	15.0%	985.5	NA	100%	985.5	1.0	mmBtu/hr	2.80E-01	AP-42	NA	0,3	0.1
New Stripper Steam - Natural Gas	90%	7,884.0	Natural Gas ^{D,F}	81.6%	6,433.3	NA	100%	6,433.3	96.8	mm8tu/hr	2.80E-01	AP-42	NA	27 1	87.2
New Stripper Steam - No. 6 Oil	90%	7,864.0	No. 6 Oll ^{D,7}	18.4%	1,450.7	NA	100%	1,450.7	92.2	mmBtu/hr	3,13E-01	AP-42	NA	28.9	20.9
Backup Stripper Steam - Natural Gas	8%	700.8	Natural Gas ^{D,F}	81.6%	571,9	NA	100%	571.9	25.3	mm8tu/hr	2.80E-01	AP-42	NA	7.1	2.0
Backup Stripper Steam - No. 6 Oll	8%	700.8	No. 6 OII ^{D F}	18.4%	128.9	NA	100%	128.9	24.1	mmBtu/hr	3.13E-01	AP-42	NA	7,5	0.5
NOX PROJECTED ACTUAL EMISSIONS	11			n ::	6	· · · · · · · · · · · · · · · · · · ·									147.9
					NETE	MISSIONS CHANGE (PAE - BAE)			5100	- 21 VT	The second second	M. M. T	FIGHT.	10 M 10	10
PAE - BAE											_				16.1

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - Ammonia Input to recovery furnace increases >1% (methanol Input limited to 1% of black liquor Input by BLRBAC),

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor design,

G - >90% of methanol condensed and burned in recovery furnace, < 10% of methanol vented into LVHC System.

H - reserved.

I - Natural gas Ignitor required when recovery furnace is less than 50% load on black liquor.

CO EMISSIONS CALCULATIONS

	Stripper Operati	Scenario Ine Time		Oper	ating ation Time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Con Operati	trois ng Time	Produc	tion Rate	C Emissio	O ns Factor	CO Control	CO En	Histons
Stripper Operating Scenario	*	hrs	Operating Configuration	*	hra	Controls	*	hrs	Value	UOM	Ib/UOM	Reference	%	lb/hr	toy
				BAS	ELINE ACTUAL	EMISSIONS (March 2021 - February 2	1023)								
Backup Stripper SOG ⁴	91,4%	8,004.0	NA	100.0%	8,004.0	SOG to CB1/CB2	100.0%	8,004.0	1,426	ADTP/day	0.0728	Columbia	NA	4,3	17.3
Backup Stripper Steam ⁴	91.4%	8,004.0	Natural Gas ^e	97.9%	7,835.7	NA	100.0%	7,835.7	29.5	mmBtu/hr	8.40E-02	AP-42	NA	2.5	9.7
Backup Stripper Steam [*]	91.4%	8,004.0	No. 6 Olf	2.1%	168.3	NA	100.0%	168.3	28,1	mmBtu/hr	3.33E-02	AP-42	NA	0.9	0.1
CO BASELINE ACTUAL EMISSIONS										-M.					27.1
	a	15	S. 1997 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PRO	JECTED ACTUAL EMISSIONS	1.1	2	5	4	5	1			
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489.8	SRL Methanol to RF2/3	100.0%	7,489.8	NA	NA	NA	NA	NA	NA	NA
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to RF3	75%	5,617.4	2,700	ADTP/day	0.0728	Columbia	NA	8.2	23.0
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489,8	SRL LVHC to CB1/CB2	25%	1,872,5	2,700	ADTP/day	0.0728	Columbia	NA	8.2	7.7
New Stripper Online	90%	7,884.0	SRL Offline	5,0%	394.2	SOG to CB1/CB2	100.0%	394.2	2,700	ADTP/day	0.0728	Columbia	NA	8.2	1,6
Backup Stripper Online	8%	700.8	NA	100.0%	700.8	SOG to CB1/CB2	100.0%	700.8	2,700	ADTP/day	0.0728	Columbia	NA	8.2	2.9
No Stripper Online	2%	175.2	Foul Condensate to Hard Pipe	100.0%	175.2	Hydrogen Peroxide Addition	100.0%	175.2	NA	NA	NA	NA	NA	NA	NA
Recovery Furnace #3 LVHC Ignitor	75%	6,570.0	Natural Gas	15.0%	985.5	NA	100.0%	985.5	1.0	mmBtu/hr	8.40E-02	AP-42	NA	0,1	0,0
New Stripper Steam - Natural Gas	90%	7,884.0	Natural Gas ^D	81,6%	6,433,3	NA	100.0%	6 433 3	96,8	mmBtu/hr	8.40E-02	AP-42	NA	8.1	26.2
New Stripper Steam - No. 6 Oil	90%	7,884.0	No. 6 Olf	18,4%	1,450.7	NA	100.0%	1,450.7	92,2	mmBtu/hr	3,33E-02	AP-42	NA	3,1	2.2
Backup Stripper Steam - Natural Gas	8%	700.8	Natural Gas ^D	81,6%	571.9	NA	100.0%	571.9	25,3	mmBtu/hr	8.40E-02	AP-42	NA	2,1	0.6
Backup Stripper Steam - No. 6 Oll	8%	700.8	No. 6 Oil	18,4%	128.9	NA	100.0%	128.9	24.1	mmBtu/hr	3.33E-02	AP-42	NA	0.8	0,1
CO PROJECTED ACTUAL EMISSIONS															64.2
			The second second	6 21 10	NET ER	AISSIONS CHANGE (PAE - BAE)		-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0.11	112 H	100.000	I COM DO	a Tri		
PAE - BAE															37.1

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - reserved

D - Historically high fuel oll percentage of fossil fuel heat input (2014)

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design.

G - reserved.

H - reserved.

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor.

VOC EMISSIONS CALCULATIONS

	Stripper	Scenario Ing Time		Oper	rating ation Time	1	Con	trois Ing Time	Produc	tion Rate	Emissio	DC na Factor	Removal	VOC Er	nissiona
Stripper Operating Scenario	%	hrs	Operating Configuration	%	hrs	Controls	*	hrs	Value	UOM	IL/UOM	Reference	*	lb/hr	tov
	A			BAS	ELINE ACTUAL	EMISSIONS (March 2021 - February	2023)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9				-		
Backup Stripper SOG	91.4%	8,004.0	NA	100.0%	8,004.0	LVHC to CB1/CB2	100.0%	8,004.0	1,426	ADTP/day	4,37	Stripped	98,0%	5 19	20.78
Aerated Stabilization Basin (ASB)	100.0%	8,760.0	Foul Condensate to Hard Pipe	100.0%	8,760.0	NA	100.0%	8,760.0	1,426	ADTP/day	8.73E-01	WATER9	NA	51,88	227,21
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to CB1/CB2	100.0%	8,760.0	1,426	ADTP/day	3.10E-03	Columbia	NA	0.18	0.81
Backup Stripper Steam ^A	91,4%	8,004,0	Natural Gas ⁸	97,9%	7,835,7	NA	100.0%	7,835,7	29,5	/mmBtu/hr	5,39E-03	AP-42	NA	0.2	0,6
Backup Stripper Steam ^A	91.4%	8,004.0	No. 6 Oll ⁸	2.1%	168.3	NA	100.0%	168.3	28.1	mmBtu/hr	1.87E-03	AP-42	NA	0.1	0,0
VOC BASELINE ACTUAL EMISSIONS	• *	·										10	M		249.43
a la superior de la s				4	PRO	IECTED ACTUAL EMISSIONS		21-0		10	-				
New Stripper Online	90%	7,684.0	SRL Online	95,0%	7,489.8	SRL Methanol to RF2/3 ⁹	100%	7,489.8	2,700	ADTP/day	14.40	Vendor	99.9%	1.62	6.07
New Stripper Online	90%	7,884.0	SRL Online	95.0%	7,489,8	SRL LVHC to RF3 ⁶	75%	5,617.4	2,700	ADTP/day	1.60	Vendor	98%	3,60	10.11
New Stripper Online	90%	7,884.0	SRL Online	95,0%	7,489.8	SRL LVHC to CB1/CB2 ⁶	25%	1,872,5	2,700	ADTP/day	1,60	Vendor	98%	3,60	3,37
New Stripper Online	90%	7,884.0	SRL Offline	5.0%	394.2	SOG to CB1/CB2	100%	394.2	2,700	ADTP/day	16.00	Vendor	98%	36.00	7,10
Backup Stripper Online	8%	700.8	NA	100.0%	700.8	SOG to CB1/CB2	100%	700.8	2,700	ADTP/day	16.00	Vendor	98%	36,00	12.61
ASB - New Stripper Online	90%	7,884.0	No Foul Condensate to Hard Pipe	100.0%	7,884,0	NA	100%	7,864.0	2,700	ADTP/day	0.29	WATER9	NA	32.40	127.72
ASB - Backup Stripper Online	8%	700.8	TRS Stripped From Foul Condensate	100,0%	700.8	NA	100%	700.8	2,700	ADTP/day	1.42	WATER9	NA	159.98	56.06
ASB - No Stripper Online	2%	175.2	Foul Condensate to Hard Pipe	100.0%	175.2	NA	100%	175.2	2,700	ADTP/day	2,20	WATER9	NA	247.05	21.64
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to RF3	75%	6,570.0	2,700	ADTP/day	3.10E-03	Columbia	NA	0.35	1,15
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760,0	LVHC to CB1/CB2	25%	2,190.0	2,700	ADTP/day	3.10E-03	Columbia	NA	0.35	0.38
Recovery Furnace #3 LVHC Ignitor	75%	6,570.0	Natural Gas ¹	15.0%	985.5	NA	100%	985,5	1.0	mmBtu/hr	5,39E-03	AP-42	NA	0.0	0.0
New Stripper Steam - Natural Gas	90%	7,884.0	Natural Gas ^D	81.6%	6,433.3	NA	100%	6,433.3	96.8	mmBtu/hr	5.39E-03	AP-42	NA	0.5	1.7
New Stripper Steam - No. 6 Oll	90%	7,884.0	No. 6 Oll ⁰	18.4%	1,450.7	NA	100%	1,450.7	92.2	mm8tu/hr	1,87E-03	AP-42	NA	0.2	0.1
Backup Stripper Steam - Natural Gas	8%	700.8	Natural Gas ^D	81.6%	571.9	NA	100%	571.9	25.3	mmBtu/hr	5.39E-03	AP-42	NA	0.1	0,0
Backup Stripper Steam - No. 6 Oil	8%	700,8	No. 6 OII ^D	18,4%	128.9	NA	100%	128.9	24.1	mmBtu/hr	1,87E-03	AP-42	NA	0.0	0.0
VOC PROJECTED ACTUAL EMISSIONS					÷		· ·								248.05
		1 1 2			NET EN	MISSIONS CHANGE (PAE - BAE)	2.2			D THERE					
PAE - BAE															-1.38

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - VOC destruction >98% in vapor phase, 99.9% in liquid phase.

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor design

G - >90% of methanol condensed and burned in recovery furnace, < 10% of methanol vented into LVHC System

H - reserved

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor.

TRS EMISSIONS CALCULATIONS

	Stripper Operati	Scenario ng Time		Oper	ating Ition Time		Con	trois ing Time	Produc	tion Rate	Emi	TRS ssions Fector	Sultur Capture ^C	TRS Em	nissions
Stripper Operating Scenario	70	hrs	Operating Configuration	*	brs	Controls	%	bes	Value	UOM	Ib/UOM	Reference	*	tb/hr	τру
NO. 10 - 52	······································			()	BASELINE ACTI	JAL EMISSIONS (March 2021 - Febru	ary 2023)			M			2 a	#	0 - 40%
Backup Stripper SOG [#]	91.4%	8,004.0	NA	100.0%	8,004.0	LVHC to CB1/CB2	100.0%	8,004.0	1,426	ADTP/day	2.88E-03	Stack test	NA	0.17	0.68
Aerated Stabilization Basin (ASB)	100.0%	8,750.0	NA	100.0%	8,760.0	NA	100.0%	8,760.0	1,426	ADTP/day	4.08E-02	H2SSIM/WATER9	NA	2.42	10.61
LVHC Collection System	100.0%	8 760.0	NA	100.0%	8,760.0	LVHC to CB1/CB2	100.0%	8,760.0	1,426	ADTP/day	8.01E-03	Stack test	NA.	0.48	2.09
TRS BASELINE ACTUAL EMISSIONS															13.38
						PROJECTED ACTUAL EMISSIONS		100	1.0.7.1				1.0	2	
New Stripper Online	90.0%	7,884.0	SRL Online	95.0%	7,489 B	SRL Methanol to RF2/3	100.0%	7,489.8	2,700	ADTP/day	0.33	Vendor	99.9%	0.04	0.14
New Stripper Online	90.0%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to RF3 ^{6,H}	75.0%	5,617.4	2,700	ADTP/day	0.49	Vendor	99.9%	0.05	0.15
New Stripper Online	90.0%	7,884.0	SRLOnline	95.0%	7,489.8	SRL LVHC to CB1/CB2 ^G	25.0%	1,872.5	2,700	ADTP/day	0.49	Vendor	99%	0.55	0.51
New Stripper Online	90.0%	7,884.0	SRL Offline	5.0%	394.2	SOG to CB1/CB2	100.0%	394.2	2,700	ADTP/day	0.81	Vendor	99%	0.91	0.18
Backup Stripper Online	8.0%	700.8	NA	100.0%	700.8	SOG to CB1/CB2	100.0%	700.8	2,700	ADTP/day	0.81	Vendor	99%	0.91	0.32
ASB - New Stripper Online	90.0%	7,884.0	No Foul Condensate to Hard Pipe	100.0%	7,884.0	NA	100.0%	7,884.0	2,700	ADTP/day	2.42E-02	H2SSIM/WATER9	NA	2.72	10.74
ASB - Backup Stripper Online	8.0%	700.8	TRS Stripped From Foul Condensate	100.0%	700.8	NA	100.0%	700.8	2,700	ADTP/day	2.72E-02	H2SSIM/WATER9	NA	3.06	1.07
ASB - No Stripper Online	2.0%	175.2	Foul Condensate to Hard Pipe	100.0%	175.2	Hydrogen Peroxide Addition	100.0%	175.2	2,700	ADTP/day	7.28E-02	H255IM/WATER9	NA	8,19	0.72
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to RF3	75.0%	6,570.0	2,700	ADTP/day	1.75E+00	Stack test	99.9%	0.20	0.65
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to CB1/CB2	25.0%	2,190.0	2,700	ADTP/day	8.76E-03	Stack test	NA	0.99	1.08
TRS PROJECTED ACTUAL EMISSIONS															15.56
	120.00	1.			NE	T EMISSIONS CHANGE (PAE - BAE)	1.000						100	States 1	ii kata ta
PAE - BAE															2.18

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Bollers No. 1 and No. 2 during baseline.

C - Sulfur capture in recovery furnace >99.9% (see note H), sulfur capture in LVHC scrubber 50%, sulfur conversion in combination boilers 99%

D - Historically high fuel oil percentage of fossil fuel heat input (2014):

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor design

G - 40% of TRS/H2S condensed into methanol and 60% of TRS/H2S vented into LVHC System

H - Recovery Furnace captures 99% of sulfur and converts 99% of remaining uncaptured sulfur.

					Foul	Methanol ⁶	LVHC ^G
					UNCTRL	UNCTRL	UNCTRL
					Ib/ADTP	Ib/ADTP	Ib/ADTP
TRS as S		MW		AHL	0.70	0.28	0.42
sulfur	S	32 065					
hydrogen sulfide	H ₂ S	34 081	82.3%		0.61	0.24	0.37
methyl mercaptan	CH ₄ S	48.107	6.4%		0.07	0.03	0.04
dimethyl sulfide	C ₂ H ₆ S	62 134	5.2%		0.07	0.03	0.04
dimethyl disulfide	C2H6S2	94 199	6.1%		0.06	0.03	0.04
TRS as TRS	TRS				O B1	0.33	0.49

H2S EMISSIONS CALCULATIONS

	Stripper	Scenario Ing Time		Ope Configur	rating ation Time		Cor	ntrois ing Time	Produc	tion Rate	Emissio	i25 ns Factor	Sulfur Capture ^C	H25 Er	missions
Stripper Operating Scenario	%	hrs	Operating Configuration	%	hrs	Controls	%	hrs	Value	UOM	B/UOM	Reference	*	lb/hr	toy
	A	******		BASE	LINE ACTUAL	EMISSIONS (March 2021 - February	2023)	10)							
Backup Stripper SOG ⁴	91.4%	8,004.0	NA	100.0%	8,004.0	LVHC to CB1/CB2	100.0%	8,004.0	1,426	ADTP/day	4.13E-04	Stack test	NA	0.02	0.10
Aerated Stabilization Basin (ASB)	100.0%	8,760.0	Foul Condensate to Hard Pipe	100.0%	8,760.0	Hydrogen Peroxide Addition	100.0%	8,750.0	1,426	ADTP/day	1.36E-02	H2SSIM	NA	0.81	3.54
LVHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to CB1/CB2	100.0%	8,760.0	1,426	ADTP/day	5.03E-04	Stack test	NA	E0.0	0.13
H25 BASELINE ACTUAL EMISSIONS	-110		6					N=///	6						3.77
					PRO	ECTED ACTUAL EMISSIONS	-	0.0.0	_			Carlos and	and the second s		
New Stripper Online	90.0%	7,884.0	SRL Online	95.0%	7,489.8	SRL Methanol to RF2/3""	100.0%	7,489.8	2,700	ADTP/day	0.24	Vendor	99.9%	0.03	0.10
New Stripper Online	90.0%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to RF3 ^{0,77}	75.0%	5,617.4	2,700	ADTP/day	0.37	Vendor	99.9%	0.04	0.12
New Stripper Online	90.0%	7,884.0	SRL Online	95.0%	7,489.8	SRL LVHC to CB1/CB2	25.0%	1,872.5	2,700	ADTP/day	0.37	Vendor	99%	0.41	0.39
New Stripper Online	90.0%	7,884.0	SRL Offline	5.0%	394.2	SOG to CB1/CB2	100.0%	394.2	2,700	ADTP/day	0.61	Vendor	99%	0,69	0.14
Backup Stripper Online	8.0%	700.8	NA	100.0%	700.8	SOG to CB1/CB2	100.0%	700.8	2,700	ADTP/day	0.61	Vendor	99%	0.69	0.24
ASB - New Stripper Online	90.0%	7,884.0	No Foul Condensate to Hard Pipe	100.0%	7,884.0	NA	100.0%	7,884.0	2,700	ADTP/day	9.27E-03	H2SSIM	NA	1.04	4.11
ASE - Backup Stripper Online	B.0%	700.8	H2S Stripped From Foul Condensate	100.0%	700.8	NA	100.0%	700.8	2,700	ADTP/day	9.81E-03	H2SSIM	NA	1.10	0,39
ASB - No Stripper Online	2.0%	175.2	Foul Condensate to Hard Pipe	100.0%	175.2	Hydrogen Peroxide Addition	100.0%	175.2	2,700	ADTP/day	9.54E-03	H2SSIM	NA	1.07	0.09
VHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to RF3	75.0%	6,570.0	2,700	ADTP/day	1.17E-01	Stack test	99.9%	0.01	0.04
VHC Collection System	100.0%	8,760.0	NA	100.0%	8,760.0	LVHC to CB1/CB2	25.0%	2,190.0	2,700	ADTP/day	5.87E-04	Stack test	NA	0.07	0.07
H2S PROJECTED ACTUAL EMISSIONS				17. C.		n						17			5.69
The March 1997 Street		10000		7.8 2	NET EN	ISSIONS CHANGE (PAE - BAE)		1. 201		- S 11 200		7.11.28			12.0
PAE - BAE															1.92

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

14

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - Sulfur capture In recovery furnace >99.9% (see note H), sulfur capture in LVHC scrubber 50%, sulfur conversion in combination boilers 99%.

D - Historically high fuel oll percentage of fossil fuel heat Input (2014).

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design.

G - 40% of TRS/H2S condensed into methanol and 60% of TRS/H2S vented into LVHC System.

H - Recovery Furnace captures 99% of sulfur and converts 99% of remaining uncaptured sulfur.

				Foul	Methanol ^G	LVHC ^G
				UNCTRL	UNCTRL	UNCTRL
				Ib/ADTP	Ib/ADTP	Ib/ADTP
TRS as 5		MW	AHL	0.70	0.28	0.42
sulfur	s	32.065				
hydrogen sulfide	H2S	34.081	82.3%	0.61	0.24	0.37
methyl mercaptan	CH4S	48.107	6.4%	0.07	0.03	0.04
dimethyl sulfide	C ₂ H ₆ S	62,134	5.2%	0.07	0.03	0.04
dimethyl disulfide	C2H6S2	94,199	6 1%	0.06	0.03	0.04
TRS as TRS	TRS			0.81	0.33	0.49

PM EMISSIONS CALCULATIONS

	Stripper	Scenario		Ope	rating		Con	trols		4. AU	1.1	M	PM		1440-c
I and the second s	Operat	ing time	- management and the second of the	Configura	ation time		Operat	ng time	Produc	tion Rate	Emissio	ns Factor	Control	PMEn	lissions
Stripper Operating Scenario	%	hrs	Operating Configuration	*	hrs	Controls	*	hrs	Value	UOM	Ib/UOM	Reference	%	ib/hr	tpy
				BAS	ELINE ACTUAL E	MISSIONS (March 2021	- February 2023)	(
Backup Stripper Steam ^A	91.4%	8,004.0	Natural Gas ^B	97.9%	7,835.7		100.0%	7,835.7	29.5	mmBtu/hr	7.60E-03	AP-42	NA	0.2	0.9
Backup Stripper Steam ^A	91.4%	8,004.0	No. 6 Oil ⁸	2.1%	168.3		100.0%	168.3	28.1	mmBtu/hr	1.61E-01	AP-42	NA	4.5	0.4
PM BASELINE ACTUAL EMISSIONS															1.3
					PROJ	ECTED ACTUAL EMISSIO	NS					1000			
Recovery Furnace #3 LVHC ignitor	75.0%	6,570.0	Natural Gas ¹	15.0%	985.5		100.0%	985.5	10	mmBtu/hr	7.60E-03	AP-42	NA	7.60E-03	3.74E-03
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ^D	81.6%	6,433.3		100.0%	6,433.3	96.8	mmBtu/hr	7.60E-03	AP-42	NA	0.7	2.4
New Stripper Steam - No. 6 Oil	90.0%	7,884.0	No. 6 Oll ²	18.4%	1,450.7		100.0%	1,450.7	92.2	mmBtu/hr	1.61E-01	AP-42	NA	14.8	10.8
Backup Stripper Steam - Natural Gas	8.0%	700.6	Natural Gas ^D	81.6%	571.9		100.0%	571.9	25.3	mmBtu/hr	7.60E-03	AP-42	NA	0.2	0.1
Backup Stripper Steam - No. 6 Oil	8.0%	700.8	No. 6 Oil ^D	18.4%	128.9		100.0%	128.9	24.1	mmBtu/hr	1.61E-01	AP-42	NA	3.9	0.3
PM PROJECTED ACTUAL EMISSIONS		1.			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					•		· · · · · · · · · · · · · · · · · · ·			13.4
	S. M. S				NET EM	ISSIONS CHANGE (PAE -	BAE)								
PAE - BAE															12.2

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Bollers No. 1 and No. 2 during baseline.

C - reserved

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design

G - reserved

H - reserved.

l - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor

PM10 EMISSIONS CALCULATIONS

3.4.5 C	Stripper	Scenario ing Time		Ope	rating ation Time		Con Operat	trois ing Time	Produ	ction Rate	PR Emissio	/10 ns Factor	PM10 Control	PM10 E	missions
Stripper Operating Scenario	%	hrs	Operating Configuration	*	hrs	Controls	%	hrs	Value	UOM	Ib/UOM	Reference	%	lb/hr	tpy
	di senti di s			BA	SELINE ACTUAL	EMISSIONS (March 2021 -	ebruary 2023)								
Backup Stripper Steam ⁴	91.4%	8,004.0	Natural Gas ⁸	97.9%	7,835.7		100.0%	7,835.7	29.5	mmBtu/hr	7.60E-03	AP-42	NA	0.2	0.9
Backup Stripper Steam ^A	91.4%	8,004.0	No. 6 Oll ⁸	2.1%	168.3		100.0%	168,3	28.1	mmBtu/hr	1.17E-01	AP-42	NA	3.3	0.3
PM10 BASELINE ACTUAL EMISSIONS										011					1.2
			a hard a second		PRO	ECTED ACTUAL EMISSION			1.1.1	12		w			
Recovery Furnace #3 LVHC Ignitor	75.0%	6,570.0	Natural Gas	15.0%	985.5		100.0%	985.5	1.0	mmBtu/hr	7.60E-03	AP-42	NA	7.60E-03	3.74E-03
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ⁰	81.6%	6,433.3		100.0%	6,433.3	96.8	mmBtu/hr	7.60E-03	AP-42	NA	0,7	2.4
New Stripper Steam - No. 6 Oll	90.0%	7,884.0	No. 6 Oil ⁰	18.4%	1,450.7		100.0%	1,450.7	92.2	mmBtu/hr	1.17E-01	AP-42	NA	10.8	7.8
Backup Stripper Steam - Natural Gas	8.0%	700,8	Natural Gas ^D	81.6%	571.9		100.0%	571.9	25.3	mmBtu/hr	7.60E-03	AP-42	NA	0.2	0.1
Backup Stripper Steam - No. 6 Oil	8.0%	700.8	No. 6 Oil ^D	18.4%	128.9		100.0%	128.9	24.1	mmBtu/hr	1.17E-01	AP-42	NA	2.8	0.2
PM10 PROJECTED ACTUAL EMISSIONS	· · · · · ·														10.4
A REAL FROM THE REAL PROPERTY.		1000		1.55	NET EN	ISSIONS CHANGE (PAE - 8	AE)								
PAE - BAE															9.3

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021.

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - reserved

D - Historically high fuel oll percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design.

G - reserved

H - reserved.

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor-

PM2.5 EMISSIONS CALCULATIONS

	Stripper	Scenario Ing Time	1000	Ope	rating ation Time		Con Operati	trois ing Time	Produc	tion Rate	PN Emissio	12.5 ns Fector	PM2.5 Control	PM2.5 E	missions
Stripper Operating Scenario	%	hrs	Operating Configuration	*	hrs	Controls	*	hrs	Value	UOM	Ib/UOM	Reference	*	lb/hr	tpy
	2 1 2 2			. 8	ASELINE ACTUAL	EMISSIONS (March 2021 - Fe	bruary 2023)	1.000	-	A DESCRIPTION OF THE OWNER OF	8			A	
Backup Stripper Steam*	91.4%	8,004.0	Natural Gas [®]	97,9%	7,835.7		100.0%	7,835,7	29,5	mmBtu/hr	7.60E-03	AP-42	NA	0.2	0.9
Backup Stripper Steam ^A	91.4%	8,004.0	No. 6 Oil	2.1%	168.3		100.0%	168.3	28.1	mmBtu/hr	8.80E-02	AP-42	NA	2.5	0,2
PM2.5 BASELINE ACTUAL EMISSIONS															1.1
				and the second s	PRO	ECTED ACTUAL EMISSIONS		ALCOLUTING STREET							
Recovery Furnace #3 LVHC Ignitor	75.0%	6,570.0	Natural Gas	15.0%	985.5		100.0%	985.5	1,0	mmBtu/hr	7.60E-03	AP-42	NA	7.60E-03	3.74E-03
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ^o	81.6%	6,433.3		100.0%	6,433,3	96.8	mm8tu/hr	7.60E-03	AP-42	NA	0.7	2.4
New Stripper Steam - No. 6 Oll	90,0%	7,884.0	No_6 Oll ^o	18.4%	1,450.7		100.0%	1,450.7	92.2	mmBtu/hr	6.80E-02	AP-42	NA	8.1	5.9
Backup Stripper Steam - Natural Gas	8.0%	700.8	Natural Gas ⁰	81.6%	571.9		100.0%	571.9	25.3	mm8tu/hr	7.60E-03	AP-42	NA	0.Z	0.1
Backup Stripper Steam - No. 6 Oil	8.0%	700.8	No. 6 Oll ⁰	18.4%	128.9		100.0%	128.9	24.1	mm8tu/hr	8.80E-02	AP-42	NA	2.1	0.1
PM2.5 PROJECTED ACTUAL EMISSIONS															8,4
			2.5		NET EN	ISSIONS CHANGE (PAE - BA	E)		100.20		- W.S.				
PAE - BAE															7.4

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021,

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - reserved

D - Historically high fuel oil percentage of fossil fuel heat input (2014)

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design.

G - reserved

H - reserved.

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor,

LEAD EMISSIONS CALCULATIONS

	Stripper	Scenario Ing Time		Oper	nating Intion Time	S	Con Operati	trois ng Time	Produc	tion Rate	Le Emissio	ad ns Factor	Lead Control	Lead Er	missions
Stripper Operating Scenario	%	brs	Operating Configuration	*	hrs	Controls	%	hrs	Value	UOM	Ib/UOM	Reference	*	lb/hr	tpy.
and the second				BASE	LINE ACTUAL E	MISSIONS (March 2021 -	February 2023)						11.00.00		
Backup Stripper Steam	91.4%	8,004.0	Natural Gas ⁸	97.9%	7,835.7		100.0%	7,835.7	29.5	mmBtu/hr	5.00E-07	AP-42	NA	1.48E-05	5.78E-05
Backup Stripper Steam	91.4%	8,004.0	No. 6 Oil ^e	2.1%	168.3		100.0%	168.3	28.1	mmBtu/hr	2.80E-05	AP-42	NA	7.87E-04	6.63E-05
LEAD BASELINE ACTUAL EMISSIONS		1			· · · · · · · · · · · · · · · · · · ·			6							1.24E-04
			and the second second second second		PROJE	CTED ACTUAL EMISSION	5	1011-0-	-			Long Party			· · · · · · · · · · · · · · · · · · ·
Recovery Furnace #3 LVHC Ignitor	75.0%	6,570.0	Natural Gas	15.0%	985.5		100.0%	985.5	1.0	mmBtu/hr	5.00E-07	AP-42	NA	5.00E-07	2.46E-07
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ⁰	81.6%	6,433.3		100.0%	6,433.3	96.8	mmBtu/hr	5.00E-07	AP-42	NA	4.84E-05	1.56E-04
New Stripper Steam - No. 6 Oil	90.0%	7,884.0	No. 6 OIP	18.4%	1,450.7		100.0%	1,450.7	92.2	mm8tu/hr	2.80E-05	AP-42	NA	2 58E-03	1.87E-03
Backup Stripper Steam - Natural Gas	8.0%	700.8	Natural Gas ⁰	81.6%	571.9		100.0%	571.9	25.3	mmBtu/hr	5.00E-07	AP-42	NA	1.27E-05	3.62E-06
Backup Stripper Steam - No. 6 Oli	8.0%	700.8	No. 6 Oil	18.4%	128.9		100.0%	128.9	24.1	mmBtu/hr	2.80E-05	AP-42	NA	6 75E-04	4.35E-05
LEAD PROJECTED ACTUAL EMISSIONS		10			10-			· · · · ·			N				2.08E-03
				-	NET EMI	SSIONS CHANGE (PAE - 8	AE)	1000	0.0						(in the set
PAE - BAE															1.95E-03

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion. Average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline.

C - reserved

D - Historically high fuel oil percentage of fossil fuel heat input (2014).

E - Actual steam usage January 1 - December 16, 2022

F - Projected steam usage at 850 gpm from vendor design

G - reserved.

H - reserved.

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor.

CO2 EMISSIONS CALCULATIONS

	Stripper	r Scenario ing Time		Configure	rating ation Time	Sec. 18	Con Operat	trois Ing Time	Produ	ction Rate	Emission	02 ns Factor	CO2 Control	CO2 Er	aissions
Stripper Operating Scenario	*	hrs	Operating Configuration	%	hrs	Controls		hrs	Value	UOM	Ib/UOM	Reference	%	lb/hr	tpy
				BAS	ELINE ACTUAL E	MISSIONS (March 2021 -	February 2023)		1 11111						
Backup Stripper Steam ⁴	91.4%	8,004.0	Natural Gas ⁸	97.9%	7,835.7		100.0%	7,835.7	29.5	mmBtu/hr	1.17E+02	AP-42	NA	3,448.9	13,512
Backup Stripper Steam ⁴	91.4%	8,004.0	No. 6 Oll [#]	2.1%	168.3		100.0%	168.3	28.1	mmBtu/hr	1.66E+02	AP-42	NA	4,655.3	392
CO2 BASELINE ACTUAL EMISSIONS				10				-		· · · ·		M		· · · · · · · · · · · · · · · · · · ·	13,904
					PROJ	ECTED ACTUAL EMISSION	5	-		5		10 m		10	
Recovery Furnace #3 LVHC Ignitor	75.0%	6,570.0	Natural Gas ¹	15.0%	985.5		100.0%	985.5	1.0	mmBtu/hr	1.17E+02	AP-42	NA	116.9	58
New Stripper Steam - Natural Gas	90.0%	7,884.0	Natural Gas ^D	81.6%	6,433.3		100.0%	6,433.3	96.8	mmBtu/hr	1.17E+02	AP-42	NA	11,313 5	36,392
New Stripper Steam - No. 6 Oil	90.0%	7,884.0	No. 6 Oil ⁰	18.4%	1,450.7		100.0%	1,450.7	92.2	mmBtu/hr	1.66E+02	AP-42	NA	15,270.9	11,076
Backup Stripper Steam - Natural Gas	8.0%	700.8	Natural Gas ^D	81.6%	571.9		100.0%	571.9	25.3	mmBtu/hr	1.17E+02	AP-42	NA	2,958.3	846
Backup Stripper Steam - No. 6 Oll	8.0%	700.8	No. 6 Oil	18.4%	128.9		100.0%	128.9	24.1	mmBtu/hr	1.66E+02	AP-42	NA	3,993.0	257
CO2 PROJECTED ACTUAL EMISSIONS		\$2			9										48,629
		1.1.1			NET EM	ISSIONS CHANGE (PAE -	IAE)		1.00	WIT RE					
PAE - BAE															34,725

A - Current (future backup) condensate steam stripper resumed operation on May 3, 2021

B - Additional process steam to operate condensate stream stripper from fossil fuel combustion average fossil fuel distribution in Combination Boilers No. 1 and No. 2 during baseline

C - reserved

D - Historically high fuel oil percentage of fossil fuel heat input (2014)

E - Actual steam usage January 1 - December 16, 2022.

F - Projected steam usage at 850 gpm from vendor design

G - reserved

H - reserved

I - Natural gas ignitor required when recovery furnace is less than 50% load on black liquor.

SUMMARY OF ASB EMISSIONS FACTORS

	Service 2		ASB Em	issions Factors (It	o/ODTP)		
Scenario	H ₂ S	DMDS	DMS	ммс	Methanol	voc ⁴	TRS ^B
Baseline Actual Emissions	0.0151	0.0114	0.0185	3.28E-04	0.92	0.97	0.0453
New Stripper Scenario	0.0103	0.0028	0.0136	1.88E-04	0.30	0.32	0.0269
Backup Stripper Scenario	0.0109	0.0033	0.0147	1.30E-03	1.53	1.58	0.0302
No Stripper Scenario	0.0106	0.0504	0.0192	7.42E-04	2.31	2.44	0.0809

A - Includes VOC TRS compounds, methanol, acetaldehyde, methyl ethyl ketone, and propionaldehyde.

B - TRS as compounds

Stripper Inlet Foul Condensate - Table 2-17 (Weston report dated October 2, 2021, Work Order No. 15730.001.008)

		Concentration (ppm)				
		Hydrogen	Methyl	Dimethyl	Dimethyl	
Date	Sample Time	Sulfide	Mercaptan	Sulfide	Disulfide	Total TRS
6/24/2021	15:10	130	14	16	13	173
6/24/2021	15:10	140	14	16	17	187
6/24/2021	17:00	140	17	18	14	189
6/24/2021	18:45	150	19	18	16	203
6/25/2021	10:35	130	12	12	11	165
6/25/2021	12:05	120	10	12	9.6	151.6
6/25/2021	13:45	190	22	22	23	257
Average of all	data	142.9	15.4	16.3	14.8	189.4
Max of 6/24 or 6/25		146.7	16.0	17.0	15.0	194.7

		MW
H2S	Hydrogen Sulfide	34.08 g/mol
Ch4S	Methyl Mercaptan	48.11 g/mol
C2H6S	Dimethyl Sulfide	62.13 g/mol
C2H6S2	Dimethyl Disulfide	94.20 g/mol
S	Sulfur	32.07 g/mol

Convert compound to equivalent S (ppm)

Hydrogen	Methyl	Dimethyl	Dimethyl	
Sulfide	Mercaptan	Sulfide	Disulfide	
138.0	10.7	8.8	10.2	
82.3%	6.4%	5.2%	6.1%	

S (ppm)	168 Maximum feed to stripper (AHL)
Lb S/gallon FC	1.40E-03
Lb S/hr @850 gpm	71.3
Lb S/ADTP (@2200 ODTP) ^a	0.70

^a Conservative Lb S/ADTP emissions factor using 2200 ODTP (2200 ODTP * ADTP/0.9 ODTP = 2444.4 ADTP) Emissions factor is representative of the lower end of the range of pulp production at the maximum steam stripper design of 850 gpm. Calculations are scaled to 2700 ADTP to represent worst case emissions.

Assumption

1. Assume no losses in feed tank

2. Assume 98% efficiency of S across stripper therefore 0.69 # S/ADTP in SOG
CONFIDENTIAL TAB M - New-Indy Catawba Monthly Production

Month	Kraft Mill	Combination Boiler No. 1 Natural Gas mmBtu	Combination Boiler No. 2 Natural Gas mmBtu	Total Natural Gas mmBtu	Combination Boiler No. 1 No. 6 Fuel Oil gallons	Combination Boiler No. 2 No. 6 Fuel Oil gallons	Total No. 6 Fuel Oil gallons	Total No. 6 Fuel Oil mmBtu
Mar-21	42,474	61,175	99,507	160,683	0	2,057	2,057	309
Apr-21	43,075	41,363	75,012	116,376	0	0	0	0
May-21	46,962	38,834	63,467	102,301	0	0	0	0
Jun-21	42,867	1,909	59,909	61,818	0	1,199	1,199	180
Jul-21	49,371	67,565	55,824	123,389	3	97	100	15
Aug-21	44,614	33,863	32,461	66,325	0	0	0	0
Sep-21	40,177	40,779	41,811	82,590	86	0	86	13
Oct-21	47,234	69,732	75,498	145,230	0	0	0	0
Nov-21	39,185	60,664	80,397	141,061	0	0	0	0
Dec-21	38,734	62,931	60,176	123,107	0	0	0	0
Jan-22	43,690	84,088	82,251	166,339	69,200	66,720	135,920	20,388
Feb-22	37,736	57,764	75,924	133,688	27,042	370	27,412	4,112
Mar-22	43,944	62,423	82,083	144,506	335	0	335	50
Apr-22	40,046	44,634	62,835	107,469	0	0	0	0
May-22	38,896	39,982	73,918	113,900	0	0	0	0
Jun-22	23,184	43,071	89,239	132,310	2,238	0	2,238	336
Jul-22	39,890	64,532	86,134	150,666	0	0	0	0
Aug-22	53,396	48,067	73,591	121,658	0	0	0	0
Sep-22	45,044	60,782	65,899	126,681	24	0	24	4
Oct-22	47,517	70,539	89,760	160,299	0	0	0	0
Nov-22	40,133	82,534	114,164	196,698	0	0	0	0
Dec-22	33,859	101,466	95,023	196,490	170,076	0	170,076	25,511
Jan-23	35,464	95,982	92,733	188,715	102,558	0	102,558	15,384
Feb-23	39,276	78,431	96,813	175,244	21,626	53	21,679	3,252
Total	996,766			3,237,544				69,553
Annual Average	498,383							
				97.9%				2.1%

1,041,075 520,537

WASTEWATER TREATMENT PLANT – SUPPORTING INFORMATION PEROXIDE ADDITION

Source: TB949 H2O2 Mill Bench Scale Study

6

B-19

1/27/2022 and 2/8/2022 H202/FC Bench Test Results w/ Corrected Ratios

NATIONAL COUNCIL FOR AIR AND STREAM IMPROVEMENT

SUMMARY OF INDUSTRY EXPERIENCE WITH ODOR MINIMIZATION AT WASTEWATER TREATMENT PLANTS

TECHNICAL BULLETIN NO. 949 MAY 2008

by Diana Cook NCASI West Coast Regional Center Corvallis, Oregon

5.3 Oxidation

Several oxidizing agents have been used for destruction of odors resulting from H_2S . The approach is to oxidize the sulfide into nonvolatile forms such as elemental sulfur, thiosulfate, sulfite, and sulfate. Chemical oxidation reactions are generally slower than biochemical oxidation reactions (ASCE 1989). In the presence of large organic loads, as with industrial wastewaters, the economics of oxidizing agent use can be prohibitive due to competitive reactions with organic materials. Some of the commonly used oxidizing agents are chlorine, chlorine dioxide, hypochlorite, oxygen, and hydrogen peroxide. Industry experience with use of oxidizing agents is summarized herein.

5.3.1 Hydrogen Peroxide

Hydrogen peroxide (H_2O_2) can be used to chemically oxidize H_2S into either elemental sulfur or sulfate (the former at pH <8 to 9; the latter at pH >8 to 9), as shown in Equations 5.6 and 5.7. In the range of pH 7 to 9, both reactions may occur. Excess H_2O_2 can oxidize other wastewater components or decompose to release oxygen and water.

$$H_2O_2 + H_2S \rightarrow S + 2H_2O \qquad (Eq. 5.6)$$

$$4H_2O_2 + S^{2-} \rightarrow SO_4^{2-} + 4H_2O$$
 (Eq. 5.7)

 H_2O_2 is a clear, colorless, nonflammable compound that is miscible with water in all proportions and is normally sold as a solution expressed as a percentage of the solution's weight (e.g., a 35% solution contains 35% H_2O_2 and 65% water by weight). Solutions of >8% are classified as oxidizers by the U.S. Department of Transportation. H_2O_2 can be obtained in small drums or tanks equipped with metering pumps and plumbed to the addition point. Storage containers must be properly vented because contamination or excess heat can accelerate decomposition to oxygen and water. Special safety handling is required, including eye protection and protective clothing.

Davies, Christy, and O'Connor (2000) reported on the effectiveness of using H_2O_2 to control odors resulting from release of H_2S at four locations around the WWTP at a pulp and paper mill in Canada. The specific objectives were to reduce H_2S concentration in an anaerobic spill basin effluent returned to the effluent clarification and treatment system; treat anaerobic sludge from the spill basin; minimize odors arising from sewering condensates; and treat all foul condensates from the mill during a scheduled shutdown of the steam stripper.

 H_2O_2 was found to be effective for odor reduction at all the locations. It was added to the anaerobic spill basin effluent at a location that promoted good mixing prior to introduction into the clarifier. The residence time associated with transfer of effluent from the spill basin to the clarifier was sufficient to oxidize H_2S and minimize odor. Sludge dewatering equipment consisted of a screen, an agitation tank, a centrifuge, and a belt press. H_2O_2 was added to the agitation tank. In addition, an odor-controlling spray (Ecosorb) was applied to the air around the screens to capture any residual odors. H_2O_2 was also used to reduce odors during occasional sewering of condensates. Dosage levels were selected based on laboratory studies that indicated that ~200 mg H_2O_2/L of treated condensate was sufficient to remove odors. A solution containing 50% H_2O_2 was also used to reduce odors during steam stripper downtime events when foul condensates were piped directly into the aeration pond.

 H_2O_2 and calcium peroxide (CaO₂) have been used in the presence of peroxidase, an enzyme found in horseradish, to remove odors in swine manure. Swine manure is known to contain large amounts of VFAs, phenolic compounds, and indolic compounds that have been implicated in odor. Peroxidase, in the presence of peroxides, has been found to polymerize phenolic odorants, thereby reducing associated odors (Govere et al. 2007).

 H_2O_2 has also been used successfully as one element of a multi-pronged approach to control odor attributed to VFA generation in anaerobic environments (Davis and Smith 2001). H_2O_2 would be particularly beneficial for use in mills with high levels of water reuse (e.g., some recycle mills). Oxygen-limited environments in the process water transport system at those facilities can be ideal for anaerobic bacterial growth. Traditional oxidizers such as sodium hypochlorite, chlorine, and chlorine dioxide increase total chloride and conductivity in the reused effluent, which can disrupt process performance and cause corrosion. The multi-pronged approach used at a 100% recycled corrugating medium mill focused on good operating practices aimed at oxygenation, biocide application to control the amount of aerobic bacteria, and H_2O_2 use to prevent anaerobic environments in the secondary treatment system (Davis and Smith 2001).

NCASI assisted a bleached kraft mill that conducted a trial to investigate the effects of adding H_2O_2 to foul condensates. Foul condensates were piped directly to the first basin of a multi-stage ASB. Samples were collected at two locations (just prior to addition of peroxide and just following the addition point) over a five-day period to assess impacts on sulfide concentrations. Samples were analyzed using direct injection GC/PFPD (NCASI Method RSC-02.02; NCASI 2007). H_2O_2 was added as a 50% solution at a rate of 1.78 gallons per minute (GPM) to the foul condensate stream, which had a flow rate of 3 MGD, resulting in a concentration of approximately 0.51 g H_2O_2/L of foul condensate. The average reduction in sulfide concentration was over 79%, as illustrated in Figure 5.3.

Figure 5.3 Sulfide Concentrations after Peroxide Addition (0.51 g/L) to a Foul Condensate [numbers above bars represent percent reductions in total sulfide observed each day]

Dosage and retention time trends were evaluated using a screening technique that involved collecting 25-mL samples in a 500-mL bottle that was closed and agitated for one minute. The cap was removed and a Jerome air monitor was used to measure volatile H_2S in the headspace. The effect of peroxide dose and retention time are illustrated in Figure 5.4. Reductions of >90% were observed after the first minute, and at some dosage rates they increased modestly with additional retention time. Figure 5.5 illustrates trends for doses of 0.5 and 1.0 GPM of a 50% H_2O_2 solution to the 3 MGD foul condensate at the four sampling locations (drop legs 1 through 4). Although some variability was observed, a significant reduction in sulfide was observed at the first drop leg under both addition rates investigated and increased gradually as the foul condensate progressed through the drop legs.

Figure 5.4 Effect of Hydrogen Peroxide Dose (0.14, 0.29, 0.43, and 0.56 g/L) and Retention Time on Sulfide Removal Efficiency [headspace measurements]

Figure 5.5 Effect of Hydrogen Peroxide Dose (0.14, 0.29, 0.43, and 0.56 g/L) and Sample Location on Sulfide Removal Efficiency [headspace measurements]

Another example of H_2O_2 use at a bleached kraft mill is illustrated in Figure 5.6. The mill conducted a bench study prior to an odor reduction trial to determine the dose-response curve for peroxide addition to foul condensates. Foul condensates were treated with the oxidant (50% H_2O_2 ; density 1.2 g/mL) volumes shown in the figure (equivalent to 0.14, 0.29, 0.43, and 0.56 g H_2O_2/L of foul condensate) at 50°C for 30 minutes in sealed vials. Samples were removed and analyzed by direct aqueous injection GC/sulfur chemiluminescence detectors (SCD) for sulfide, MeSH, DMS, and

DMDS. The data indicate that sulfide and MeSH were readily removed, but that DMS required significantly higher doses to achieve equivalent levels of removal. DMDS was not removed and in fact increased with peroxide dose, presumably due to oxidation of MeSH.

Figure 5.6 Hydrogen Peroxide Dose-Response Curve for Treatment of Foul Condensates

Following the bench studies, a mill trial was conducted over a five day period. H_2O_2 was added to the foul condensate tank (pH 9.0 to 9.3) at a rate of 1 gallon (100% H_2O_2) to every 500 gallons of condensate, which is equivalent to 2.8 g H_2O_2/L of foul condensate. This addition point provided a retention time of ~30 minutes prior to the WWTP. The trial resulted in overall average reductions in sulfide, MeSH, and DMS of 38.8, 64.6, and -3.9%, respectively (Table 5.1). The level of DMDS increased (probably due to oxidation of MeSH to DMDS) during the addition but reportedly did not affect overall odor from the WWTP (NCASI files). The mill continues to feed H_2O_2 to the foul condensate and has reported a reduction in odor at the WWTP.

Ų			
Day of Study	H_2S	MeSH	DMS
1	26.1	67.3	-20.8
2	68.3	74.7	16.5
3	38.1	57.0	1.9
4	36.4	60.0	2.6
5	25.3	63.8	-19.5
Average	38.8	64.6	-3.86

Table 5.1	Percent Reduction in Hydrogen Sulfide, Methyl Mercaptan, and Dimethyl Sulfide
	during a Peroxide Addition Trial Conducted in a Foul Condensate

WASTEWATER TREATMENT PLANT – SUPPORTING INFORMATION BASELINE ACTUAL EMISSIONS

May/July 2022 Baseline Emissions Calculations H₂S, TRS Compounds, and VOC New-Indy Catawba - Catawba, SC

		Method: GC/SCD Reduced Sulfur Analysis (Average)					
Sample Date	Sample Location	ALS H2S, ppb	ALS DMDS, ppb	ALS DMS, ppb	ALS MMC, ppl		
2021/2022	Avg. ASB Influent (2021 and 2022)	252	86.78	199	2.60		
ALC: NO. 1	Foul Condensate (prior to H ₂ O ₂)	105,667	6,633	14,667	8,267		
5/17/2022	Predicted % Reduction from H ₂ O ₂	0.99	MMC converted into DMDS	0.90	0.99		
	Foul Condensate (after H ₂ O ₂)	1,057	14,647	1,467	82.67		
	Foul Condensate (prior to H ₂ O ₂)	58,333	5,633	5,400	3,900		
7/19/2022	Predicted % Reduction from H_2O_2	0.99	MMC converted into DMDS	0.90	0.99		
and the second second	Foul Condensate (after H ₂ O ₂)	583	9,414	540	39.00		
	Foul Condensate (prior to H ₂ O ₂)	76.200	6.932	7.140	7,393		
7/20/2022	Predicted % Reduction from H_2O_2	0.99	MMC converted into DMDS	0.90	0.99		
	Foul Condensate (after H ₂ O ₂)	762	14,099	714	73.93		
Deres de la post	Foul Condensate (prior to H ₂ O ₂)	62,500	8.967	9.200	6.533		
7/21/2022	Predicted % Reduction from H_2O_2	0.99	MMC converted into DMDS	0.90	0.99		
	Foul Condensate (after H ₂ O ₂)	625	15,300	920	65.33		
		ALS H2S, ppm	ALS DMDS, ppm	ALS DMS, ppm	ALS MMC, ppm		
	Avg. Foul Condensate Concentration (after peroxide)	0.76	13.36	0.91	0.07		
	Avg. ASB Inlet Concentration	0.25	0.09	0.20	2.60E-03		
Loading Calculation	Avg. Hardpipe Flow, MGD	0.34	1,34	034	0.57		
Louding calculation	Avg. ASB Inlet Flow, MGD	23.96	- 23/45	23.95	23,25		
	Total Flow	24.30	24.22	34129	43		
	Flow Weight. Avg. Loading (ppm)	0.2593	0.2712	0.2088	0.0035		
	H2SSIM/WATER9 Results	H2S, g/s	DMDS, g/s	DMS, g/s	MMC, g/s		
A CONTRACT LINE	ASB Zone 1		0.10	0.15	2.74E-03		
Populte and Emissions	ASB Zone 2	Multiple	1.43E-03	3.05E-03	4.63E-05		
Results and Emissions	ASB Zone 3	H2SSIM runs.	2.57E-05	1.01E-04	1.43E-06		
	Total ASB		0.10	0.16	2.78E-03		
	Baseline Emissions Factor 2200 ODTP/day	H2S, Ib/ODTP	DMDS, Ib/ODTP	DMS, Ib/ODTP	MMC, Ib/ODTP		
	Baseline Emissions Factor	1.51E-02	1.14E-02	1.85E-02	3.28E-04		

Type of unit is 1 Total water added at the unit (1/s) 50 0 2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 84 8 manhole air velocity (ft/min) 128 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 15 radius of underflow conduit (cm) 12 25 16 Underflow T (C) 17 oscillation cycle time (min) 5 18 design collection velocities (ft/s) 2 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight 0 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:17:08 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input \cap 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL DISULFIDE at 34.1 deg.C (93.3 deg.F)

24

28

44

4.6

hl= 0.001714 atm-m3/mol vp = 45.945 mmHg (0.88868 psia)95.2 y/x 0.068011 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C kl = 0. L/q-hrdl= 1.041e-05 cm2/s dv= 0.088022 cm2/s Compound flow rate from inlet water is 0.26179 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 31.792 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 237.766. kl is estimated as 5.971e-06 m/s. kg is estimated as 0.005598 m/s. Model: 2 kg is estimated as 0.005598 m/s. Model: 2 The Schmidt number is 1.70412. The friction velocity is 37.398 m/s kg is estimated as 0.012927 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.11564 m/s. kl (agitated) is estimated as 0.017486 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 2.753e-04 m/s. The effective stripping time (surface + diffused air) is 84.752 minutes. (1.41254 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1907.493 min. (31.792 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.11781 KL aerated (m/s) 0.017486 KL OVERALL AERATED (m/s) 0.005609 KG quiescent (m/s) 0.005703 KL quiescent (m/s) 5.971e-06 KL OVERALL QUIESCENT (m/s) 5.883e-06 2.753e-04 KL OVERALL (m/s) 84.752 air stripping time constant (min) FRACTION SURFACE VOLATILIZED 0.36432 FRACTION SUBMERGED VOLATILIZED Ο. TOTAL FRACTION VOLATILIZED 0.36432 FRACTION BIOLOGICALLY REMOVED 0.61949 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 0.095374 (Mg/year) 3.00772 EMISSION FACTOR (g/cm2-s) 1.096e-10 UNIT EXIT CONCENTRATION (ppmw) 0.003981 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:17:08 COMPOUND: DIMETHYL DISULFIDE Type of unit is system exit stream 1 Description of unit 12 def.system exit st TOTAL AIR EMISSIONS (g/s) 0.

(Mg/year) Ο. EMISSION FACTOR (g/cm2-s) 1.096e-10 UNIT EXIT CONCENTRATION (ppmw) 6.079e-06 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:17:08 COMPOUND: DIMETHYL DISULFIDE Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (l/s) \cap 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 1 7 Open surface=1 0 8 Subsurface entrance=1 \cap 9 subsurface exit =1 __________(Cm)
II distance to next unit (cm)
I2 slope of underflow conduit
I6 velocity air at drain opening (ft/min)
I7 municipal waste in conduit =1
I8 Assume equilibrium in unit 10 radius of underflow conduit (cm) 12 500 0.015 84 0 0 19 pH (enter 0 for no pH adjustment) 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1064.53 l/s. Weight fraction down is 2.712E-07 Gas concentration in 0 mol fraction. Gas flow 1064.53 L/s Weight fraction out at base of drop is 2.45916666343852E-07 fraction transferred in the drain drop from hub is .093228 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. 161 162 163 164 165 166 fraction loss in waste3 drop to hub 0. fraction loss in collection hub drop 0.093228 fraction loss in unit Ο. fraction loss in line run 0. component upstream of unit, g/s 0. mol fract. headspace upstream (y) 0. headspace at conduit discharge, y 0. headspace end of conduit (y) 3.134e-19 mol fract. headspace vent base 6.978e-06 headspace flow out vent (cc/s) headspace flow down line (cc/s) -1.065e+06 1.065e+06 KG surface (m/s) 1860.422 KL surface (m/s) 6.37e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.2887 total component into unit, g/s 0.26179 TOTAL AIR EMISSIONS (g/s) 0.026915 (Mg/year) 0.84879 EMISSION FACTOR (g/cm2-s) 1.096e-10 UNIT EXIT CONCENTRATION (ppmw) 0.24592 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:17:08 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
2 Wastewater temperature (C)
                                                                                        30.01
                3 length of aeration unit (m)
                                                                                       376
4 width of aeration unit (m)

5 depth of aeration unit (m)

6 Area of agitation (each aerator,m2)

7 Total number of agitators in the unit

8 Power of agitation (each aerator,HP)

9 Impeller diameter (cm)

10 Impeller rotation (RPM)

11 Agitator mechanical efficiency

12 aerator effectiveness, alpha

13 if there is plug flow, enter 1

14 Overall biorate (mg/g bio-hr)

15 Aeration air flow (m3/s)

16 active biomass, aeration (g/l)

17 If covered, then enter 1

205

18 special input

207

19 pH (enter 0 for no pH adjustment)
               4 width of aeration unit (m)
                                                                                       188
                                                                                       0.91
                                                                                       135
                                                                                       75
                                                                                       49.53
                                                                                       1200
                                                                                      0.83
                                                                                     0.83
                                                                                      Ω
                                                                                      19
                                                                                       0
                                                                                       0.3
                                                                                       Ω
                                                                                        0
                19 pH (enter 0 for no pH adjustment)
                                                                                        7.42
              Properties of DIMETHYL DISULFIDE at 30. deg.C (86. deg.F)
                   hl= 0.00141 atm-m3/mol vp= 37.814 mmHg (0.7314 psia)
                           78.352 y/x
                           0.056726 g/L gas per g/L liquid
                   Temperature adjustment factor = 1.046 ^(T-25), deg. C
                    kl= 0. L/g-hr dl= 1.027e-05 cm2/s dv= 0.085991 cm2/s
           Compound flow rate from inlet water is 1.411e-04 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
24.6
              The residence time in the unit is 16.785 hr.
                 ____Biomass production
                      The biomass production rate is 0.mg/hr. (0. mg/L)
                       The fraction dissolved solids converted is 0. .
                       The estimated biomass exit concentration is 0. mg/L.
                       Quiescent wind shear surface ____Springer
             kl is estimated as 5.918e-06 m/s.
              kg is estimated as 0.005575 m/s. Model: 2
          kg is estimated as 0.005575 m/s. Model: 2

kg is estimated as 0.005575 m/s. Model: 2

The Schmidt number is 1.74436.

The friction velocity is 37.398 m/s

kg is estimated as 0.012742 m/s. Model: 3

______Agitated surface

The rotation speed is 125.654 radians per second.
229
231
233
234
              The rotation factor NRW is 2.052e+06.
              The power number NPR is 7.881e-04.
              The rotation factor NFR is 797.027.
                kg (agitated) is estimated as 0.1143 m/s.
               kl (agitated) is estimated as 0.015772 m/s.
240
                      The specified and growth biomass is 0.3 g/L.
                  The effective KL (surface + diffused air) is 5.972e-05 m/s.
                  The effective stripping time (surface + diffused air) is 253.944 minutes. (4.2324
                   hrs.)
                  The pump mixing time is 5 x the pumping recirculaion time, 0. min.
                  The ratio of the mixing to the striping (surface + diffused air) is 0.
                 The mean residence time is 1007.112 min. (16.785 hr.)
                 The ratio of the pump mixing to the residence time is 0.
                 KG aerated (m/s)
KL aerated (m/s)
KL OVERALL AERATED (m/s)
                                                                                0.11644
                                                                                0.015772
                                                                                0.004711
                  KG quiescent (m/s)
KL quiescent (m/s)
                                                                                0.005679
                                                                               5.918e-06
                   KL OVERALL QUIESCENT (m/s)
                                                                              5.813e-06
                   KL OVERALL (m/s)
                                                                               5.972e-05
                    air stripping time constant (min)
                                                                               253.944
```

```
B-31
```

FRACTION SURFACE VOLATILIZED 0.18189 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.18189 FRACTION BIOLOGICALLY REMOVED 0.77225 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 2.567e-05 (Mg/year) 8.094e-04 EMISSION FACTOR (g/cm2-s) 3.631e-14 UNIT EXIT CONCENTRATION (ppmw) 6.079e-06 264 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:17:08 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 32.08 2 Wastewater temperature (C) 368 3 length of aeration unit (m) 4 width of aeration unit (m) 184 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 278 9 Impeller diameter (cm) 49.53 279 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 289 Properties of DIMETHYL DISULFIDE at 32.1 deg.C (89.7 deg.F) hl= 0.001558 atm-m3/mol vp= 41.785 mmHg (0.80821 psia) 86.579 y/x 0.062258 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.034e-05 cm2/s dv= 0.087022 cm2/s k1=0. L/q-hrCompound flow rate from inlet water is 0.004238 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 17.139 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 5.945e-06 m/s. kg is estimated as 0.005633 m/s. Model: 2 kg is estimated as 0.005633 m/s. Model: 2 The Schmidt number is 1.72371. The friction velocity is 37.398 m/s kg is estimated as 0.012836 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.11498 m/s.						
320	kl (agitated)is estimated as 0.016622 m/s.						
321	The specified and growth biomass is 0.3 g/L .						
322	The effective KL (surface + diffused air)	is 1.598e-04 m/s.					
323	The effective stripping time (surface + di	ffused air) is 101.198 minutes.					
	(1.68663 hrs.)						
324	The pump mixing time is 5 x the pumping recirculaion time, 0. min.						
325	The ratio of the mixing to the striping (s	urface + diffused air) is 0.					
326	The mean residence time is 1028.32 min. (1	7.139 hr.)					
327	The ratio of the pump mixing to the reside	nce time is 0.					
328	KG aerated (m/s)	0.11714					
329	KL aerated (m/s)	0.016622					
330	KL OVERALL AERATED (m/s)	0.005152					
331	KG quiescent (m/s)	0.005738					
332	KL quiescent (m/s)	5.945e-06					
333	KL OVERALL QUIESCENT (m/s)	5.85e-06					
334	KL OVERALL (m/s)	1.598e-04					
335	air stripping time constant (min)	101.198					
336	FRACTION SURFACE VOLATILIZED	0.33837					
337	FRACTION SUBMERGED VOLATILIZED	0.					
338	TOTAL FRACTION VOLATILIZED	0.33837					
339	FRACTION BIOLOGICALLY REMOVED	0.62833					
340	FRACTION ABSORBED	0.					
341	TOTAL AIR EMISSIONS (g/s)	0.001434					
342	(Mg/year)	0.045218					
343	EMISSION FACTOR (g/cm2-s)	2.118e-12					
344	UNIT EXIT CONCENTRATION (ppmw)	1.326e-04					
345							

Type of unit is 50 0 1 Total water added at the unit (1/s) 50 2 Area of openings at unit (cm2) 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 ŭ., 25 6 Temperature of air (C) 7 Drain air velocity (ft/min) 84 8 manhole air velocity (ft/min) 128 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 .006 14 friction factor gas 15 radius of underflow conduit (cm) 12 16 Underflow T (C) 25 17 oscillation cycle time (min) 5 2 18 design collection velocities (ft/s) 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight Ο 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:13 41 COMPOUND: DIMETHYL SULFIDE (DMS) 42 43 Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL SULFIDE (DMS) at 34.1 deg.C (93.3 deg.F)

hl= 0.002924 atm-m3/mol vp = 704.653 mmHg (13.629 psia)162.463 v/x 0.11606 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.504e-05 cm2/s dv= 0.14765 cm2/s k1=0. L/g-hrCompound flow rate from inlet water is 0.19189 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 31.792 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 237.766. kl is estimated as 7.634e-06 m/s. kg is estimated as 0.007917 m/s. Model: 2 kg is estimated as 0.007917 m/s. Model: 2 The Schmidt number is 1.01591. The friction velocity is 37.398 m/s kg is estimated as 0.017873 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.14978 m/s. kl (agitated) is estimated as 0.021024 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 4.77e-04 m/s. The effective stripping time (surface + diffused air) is 48.915 minutes. (0.81526 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1907.493 min. (31.792 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.15258 KL aerated (m/s) 0.021024 KL OVERALL AERATED (m/s) 0.009769 KG quiescent (m/s) 0.008066 KL quiescent (m/s) 7.634e-06 KL OVERALL QUIESCENT (m/s) 7.574e-06 KL OVERALL (m/s) 4.77e-04 air stripping time constant (min) 48.915 FRACTION SURFACE VOLATILIZED 0.80226 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.80226 FRACTION BIOLOGICALLY REMOVED 0.17717 FRACTION ABSORBED Ο. TOTAL AIR EMISSIONS (g/s) 0.15394 (Mg/year) 4.85471 EMISSION FACTOR (g/cm2-s) 1.769e-10 UNIT EXIT CONCENTRATION (ppmw) 0.003708 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:13 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is system exit stream 1 Description of unit 12 def.system exit st TOTAL AIR EMISSIONS (q/s) 0. B-35

104

114

(Mg/year) EMISSION FACTOR (g/cm2-s) 0. 1.769e-10 UNIT EXIT CONCENTRATION (ppmw) 1.362e-05 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential \New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:13 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)Ω 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 8 Subsurface entrance=1 0 144 9 subsurface exit =1 \cap 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 17 municipal waste in conduit =1 18 Assume equilibrium in unit, =1 84 0 0 19 pH (enter 0 for no pH adjustment) 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1064.53 l/s. Weight fraction down is 2.088E-07 Gas concentration in 0 mol fraction. Gas flow 1064.53 L/s Weight fraction out at base of drop is 1.80253671574623E-07 fraction transferred in the drain drop from hub is .136716 161 162 163 164 165 166 166 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. fraction loss in waste3 drop to hub 0. fraction loss in collection hub drop 0.13672 fraction loss in unit Ο fraction loss in unit
fraction loss in line run
component upstream of unit, g/s
mol fract. headspace upstream (y)
headspace at conduit discharge, y
headspace end of conduit (y)
mol fract. headspace vent base
headspace flow out vent (cc/s)
headspace flow down line (cc/s)
KG surface (m/s)
KL surface (m/s) 0. Ο. 0. Ο. 4.509e-19 171 1.195e-05 -1.065e+06 1.065e+06 2626.947 KL surface (m/s)2020.74KL surface (m/s)8.245e-flow of waste down hub (l/s)0.component flow in waste into unit (g/s)0.22227total component into unit, g/s0.19189TOTAL AIR EMISSIONS (g/s)0.03038 8.245e-09 0.030388 (Mg/year) 0.95833 EMISSION FACTOR (g/cm2-s) 1.769e-10 UNIT EXIT CONCENTRATION (ppmw) 0.18025 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:13 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

B-36

30.01 2 Wastewater temperature (C) 3 length of aeration unit (m) 376 4 width of aeration unit (m) 188 5 depth of aeration unit (m) 0.91 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 6 8 Power of agitation (each aerator, HP) 75 o rower of agitation (each aerator 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 14 Overall bisects (min) 49.53 1200 11 Agitator mechanical efficiency 0.83 0.83 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 0.3 204 16 active biomass, aeration (g/l) 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.42 Properties of DIMETHYL SULFIDE (DMS) at 30. deg.C (86. deg.F) hl= 0.002519 atm-m3/mol vp= 606.985 mmHg (11.74 psia) 139.945 y/x 0.10132 g/L gas per g/L liquid 213 Temperature adjustment factor = $1.046 \wedge (T-25)$, deq. C k1= 0. L/q-hr dl= 1.485e-05 cm2/s dv= 0.14425 cm2/s Compound flow rate from inlet water is 1.708e-04 g/s. Compound flow rate from inlet vent is 0. q/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 16.785 hr. ____Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 329.675. kl is estimated as 7.566e-06 m/s. kg is estimated as 0.007884 m/s. Model: 2 kg is estimated as 0.007884 m/s. Model: 2 230 The Schmidt number is 1.03989. The friction velocity is 37.398 m/s kg is estimated as 0.017611 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. 234 235 The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.14804 m/s. kl (agitated) is estimated as 0.018962 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 1.053e-04 m/s. The effective stripping time (surface + diffused air) is 144.073 minutes. (2.40122 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1007.112 min. (16.785 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.15081 KL aerated (m/s) 0.018962 KL OVERALL AERATED (m/s) 0.00854 KG quiescent (m/s) KL quiescent (m/s) 0.008032 7.566e-06 KL OVERALL QUIESCENT (m/s) 7.497e-06 KL OVERALL (m/s) 1.053e-04 air stripping time constant (min) 144.073

```
B-37
```

FRACTION SURFACE VOLATILIZED 0.59355 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.59355 FRACTION BIOLOGICALLY REMOVED 0.32154 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 1.014e-04 (Mg/year) 0.003197 EMISSION FACTOR (g/cm2-s) 1.434e-13 UNIT EXIT CONCENTRATION (ppmw) 1.362e-05 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential \New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:13 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment ASB Zone 2 1 Description of unit 18 271 2 Wastewater temperature (C) 32.08 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 274 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 8 Power of agitation (each aerator,HP) 15 75 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical eff 49.53 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 0 19 284 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 287 18 special input Ω 19 pH (enter 0 for no pH adjustment) 7.24 290 Properties of DIMETHYL SULFIDE (DMS) at 32.1 deg.C (89.7 deg.F) 291 hl= 0.002719 atm-m3/mol vp= 655.201 mmHg (12.673 psia) 292 151.062 y/x 0.10863 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.495e-05 cm2/s dv= 0.14597 cm2/s k1= 0. L/g-hr Compound flow rate from inlet water is 0.003948 g/s. Compound flow rate from inlet vent is 0. g/s. 297 298 Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 17.139 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.6e-06 m/s. kg is estimated as 0.007966 m/s. Model: 2 kg is estimated as 0.007966 m/s. Model: 2 The Schmidt number is 1.02758. The friction velocity is 37.398 m/s kg is estimated as 0.017744 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.14892 m/s.						
320	kl (agitated) is estimated as 0.019984 m/s						
321	The specified and growth biomass is 0	.3 g/L.					
322	The effective KL (surface + diffused air) is 2.809e-04 m/s.						
323	The effective stripping time (surface + o	diffused air) is 57.552 minutes. (0.9592					
	hrs.)						
324	The pump mixing time is 5 x the pumping :	recirculaion time, O. min.					
325	The ratio of the mixing to the striping	(surface + diffused air) is 0.					
326	The mean residence time is 1028.32 min.	(17.139 hr.)					
327	The ratio of the pump mixing to the resid	dence time is 0.					
328	KG aerated (m/s)	0.15171					
329	KL aerated (m/s)	0.019984					
330	KL OVERALL AERATED (m/s)	0.009148					
331	KG quiescent (m/s)	0.008115					
332	KL quiescent (m/s)	7.6e-06					
333	KL OVERALL QUIESCENT (m/s)	7.537e-06					
334	KL OVERALL (m/s)	2.809e-04					
335	air stripping time constant (min)	57.552					
336	FRACTION SURFACE VOLATILIZED	0.77311					
337	FRACTION SUBMERGED VOLATILIZED	0.					
338	TOTAL FRACTION VOLATILIZED	0.77311					
339	FRACTION BIOLOGICALLY REMOVED	0.18362					
340	FRACTION ABSORBED	0.					
341	TOTAL AIR EMISSIONS (g/s)	0.003052					
342	(Mg/year)	0.096247					
343	EMISSION FACTOR (g/cm2-s)	4.507e-12					
344	UNIT EXIT CONCENTRATION (ppmw)	1.605e-04					
345							

Type of unit is 1 Total water added at the unit (1/s)50 0 2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 84 128 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 12 15 radius of underflow conduit (cm) 25 16 Underflow T (C) 17 oscillation cycle time (min) 5 2 18 design collection velocities (ft/s) 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight 0 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential \New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:53 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 295 3 length of aeration unit (m) 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of METHANETHIOL(methyl mercaptan) at 34.1 deg.C (93.3 deg.F)

14

32

44

hl= 0.004158 atm-m3/mol vp= 2272.142 mmHg (43.948 psia) 230.99 y/x 0.16502 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.525e-05 cm2/s dv= 0.23702 cm2/s k1=0. L/q-hrCompound flow rate from inlet water is 0.003078 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 31.792 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 237.766. kl is estimated as 7.703e-06 m/s. kg is estimated as 0.010871 m/s. Model: 2 kg is estimated as 0.010871 m/s. Model: 2 The Schmidt number is 0.63285. The friction velocity is 37.398 m/s kg is estimated as 0.024173 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.18977 m/s. kl (agitated) is estimated as 0.021167 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 6.265e-04 m/s. The effective stripping time (surface + diffused air) is 37.242 minutes. (0.62071 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1907.493 min. (31.792 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.19332 KL aerated (m/s) 0.021167 KL OVERALL AERATED (m/s) 0.012876 KG quiescent (m/s) 0.011075 KL quiescent (m/s) 7.703e-06 KL OVERALL QUIESCENT (m/s) 7.672e-06 KL OVERALL (m/s) 6.265e-04 air stripping time constant (min) 37.242 FRACTION SURFACE VOLATILIZED 0.88891 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.88891 FRACTION BIOLOGICALLY REMOVED 0.093739 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 0.002736 0.086272 (Mg/year) EMISSION FACTOR (g/cm2-s)3.144e-12 UNIT EXIT CONCENTRATION (ppmw) 5.017e-05 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:53 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is system exit stream 1 Description of unit 12 def.system exit st TOTAL AIR EMISSIONS (g/s) 0. B-41

(Mg/year) 0. EMISSION FACTOR (q/cm2-s) 3.144e-12 UNIT EXIT CONCENTRATION (ppmw) 1.458e-07 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:53 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 0 8 Subsurface entrance=1 9 subsurface exit =1 Ω 10 radius of underflow conduit (cm) 11 distance to next unit (cm) 12 slope of underflow conduit 16 velocity air at drain opening (ft/min) 17 municipal waste in conduit =1 18 Assume equilibrium in unit, =1 19 pH (enter 0 for no pH adjustment) 12 500 0.015 84 0 0 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1064.53 l/s. Weight fraction down is 3.5E-09 Gas concentration in 0 mol fraction. Gas flow 1064.53 L/s Gas flow1064.53 L/sWeight fraction out at base of drop is2.89099406807993E-09fraction transferred in the drain drop from hub is.174002fraction loss in wastel drop to hub0.fraction loss in waste2 drop to hub0.fraction loss in waste3 drop to hub0.fraction loss in collection hub drop0.174 159 160 161 162 163 164 165 166 167 fraction loss in collection hub drop fraction loss in unit fraction loss in line run component upstream of unit, g/s mol fract. headspace upstream (y) headspace at conduit discharge, y headspace end of conduit (y) mol fract. headspace vent base headspace flow out vent (cc/s) headspace flow down line (cc/s) KG surface (m/s) KL surface (m/s) 0. 0. 0. 0. 0. 9.429e-21 3.292e-07 -1.065e+06 1.065e+06 3602.086 KL surface (m/s)8.324e-0KL surface (m/s)8.324e-0flow of waste down hub (l/s)0.component flow in waste into unit (g/s)0.003726total component into unit, g/s0.003078TOTAL AIR EMISSIONS (g/s)6.483e-0 8.324e-09 6.483e-04 (Mg/year) 0.020445 EMISSION FACTOR (g/cm2-s)3.144e-1UNIT EXIT CONCENTRATION (ppmw)0.002891 3.144e-12 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:53 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
30.01
            2 Wastewater temperature (C)
                                                                            376
             3 length of aeration unit (m)
             4 width of aeration unit (m)
                                                                            188
            5 depth of aeration unit (m)
                                                                            0.91
            6 Area of agitation (each aerator,m2)
                                                                           135
           6 Area of agitation (each aerator,m2)
7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Aeration air flow (m3/s)
16 active biomass, aeration (g/l)
17 If covered, then enter 1
                                                                            6
                                                                            75
                                                                            49.53
                                                                            1200
                                                                            0.83
                                                                           0.83
                                                                            0
                                                                           19
                                                                            0
                                                                           0.3
             17 If covered, then enter 1
                                                                            Ο
             18 special input
                                                                            0
                                                                            7.42
              19 pH (enter 0 for no pH adjustment)
            Properties of METHANETHIOL(methyl mercaptan) at 30. deg.C (86. deg.F)
              hl= 0.003687 atm-m3/mol vp= 2014.774 mmHg (38.97 psia)
                        204.826 y/x
                        0.14829 g/L gas per g/L liquid
               Temperature adjustment factor = 1.046 ^(T-25), deg. C
                 kl=0. L/g-hr dl=1.505e-05 cm2/s dv=0.23155 cm2/s
           Compound flow rate from inlet water is 1.957e-06 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
              Total submerged aeration is 0. m3/s.
            The residence time in the unit is 16.785 hr.
              ____Biomass production
                   The biomass production rate is 0.mg/hr. (0. mg/L)
                    The fraction dissolved solids converted is 0. .
                    The estimated biomass exit concentration is 0. mg/L.
                     Quiescent wind shear surface Springer
           The fetch to depth ratio is 329.675.
              kl is estimated as 7.635e-06 m/s.
              kg is estimated as 0.010826 m/s. Model: 2
              kg is estimated as 0.010826 m/s. Model: 2
            kg is estimated as 0.010826 m/s. Model: 2
The Schmidt number is 0.64779.
The friction velocity is 37.398 m/s
kg is estimated as 0.023814 m/s. Model: 3
The rotation factor NRW is 2.052e+06.
             The power number NPR is 7.881e-04.
             The rotation factor NFR is 797.027.
              kg (agitated) is estimated as 0.18756 m/s.
              kl (agitated) is estimated as 0.019092 m/s.
240
                   The specified and growth biomass is 0.3 g/L.
                The effective KL (surface + diffused air) is 1.391e-04 m/s.
                The effective stripping time (surface + diffused air) is 109.038 minutes.
                (1.81731 hrs.)
                The pump mixing time is 5 x the pumping recirculaion time, 0. min.
                The ratio of the mixing to the striping (surface + diffused air) is 0.
               The mean residence time is 1007.112 min. (16.785 hr.)
              The ratio of the pump mixing to the residence time is 0.
                KG aerated (m/s)
                                                                      0.19108
                 KL aerated (m/s)
                                                                      0.019092
               KL OVERALL AERATED (m/s)
KG quiescent (m/s)
KL quiescent (m/s)
                                                                      0.011483
                                                                      0.011029
                                                                      7.635e-06
                KL OVERALL QUIESCENT (m/s)
                                                                      7.6e-06
                KL OVERALL (m/s)
                                                                     1.391e-04
                air stripping time constant (min)
                                                                     109.038
```

```
B-43
```

FRACTION SURFACE VOLATILIZED 0.7324 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.7324 FRACTION BIOLOGICALLY REMOVED 0.1883 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 1.433e-06 (Mg/year) 4.52e-05 EMISSION FACTOR (g/cm2-s) 2.028e-15 UNIT EXIT CONCENTRATION (ppmw) 1.458e-07 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\BAE\TRS\WATER9\ASB V5 3/14/2023 2:17:21 PM 19:18:53 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 2 Wastewater temperature (C) 32.08 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 15 Aeration air flow (m3/s) Ω 19 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of METHANETHIOL(methyl mercaptan) at 32.1 deg.C (89.7 deg.F) hl = 0.003921 atm - m3/mol vp = 2142.771 mmHg (41.446 psia)217.838 y/x 293 0.15664 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1=0. L/g-hrdl= 1.515e-05 cm2/s dv= 0.23433 cm2/s Compound flow rate from inlet water is 5.341e-05 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 17.139 hr. ____Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.67e-06 m/s. 309 kg is estimated as 0.010938 m/s. Model: 2 kg is estimated as 0.010938 m/s. Model: 2 The Schmidt number is 0.64013. The friction velocity is 37.398 m/s kg is estimated as 0.023996 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.18868 m/s.									
320	kl (agitated)is estimated as 0.020121 m/s.									
321	The specified and growth biomass is 0.3 g/L .									
322	The effective KL (surface + diffused air) is 3.715e-04 m/s.									
323	The effective stripping time (surface + d	iffused air) is 43.518 minutes. (0.72529								
	hrs.)									
324	The pump mixing time is 5 x the pumping recirculaion time, 0. min.									
325	The ratio of the mixing to the striping (surface + diffused air) is 0.								
326	The mean residence time is 1028.32 min. (17.139 hr.)								
327	The ratio of the pump mixing to the resid	ence time is 0.								
328	KG aerated (m/s)	0.19222								
329	KL aerated (m/s)	0.020121								
330	KL OVERALL AERATED (m/s)	0.012174								
331	KG quiescent (m/s)	0.011143								
332	KL quiescent (m/s)	7.67e-06								
333	KL OVERALL QUIESCENT (m/s)	7.637e-06								
334	KL OVERALL (m/s)	3.715e-04								
335	air stripping time constant (min)	43.518								
336	FRACTION SURFACE VOLATILIZED	0.86584								
337	FRACTION SUBMERGED VOLATILIZED	0.								
338	TOTAL FRACTION VOLATILIZED	0.86584								
339	FRACTION BIOLOGICALLY REMOVED	0.097514								
340	FRACTION ABSORBED	0.								
341	TOTAL AIR EMISSIONS (g/s)	4.625e-05								
342	(Mg/year)	0.001458								
343	EMISSION FACTOR (g/cm2-s)	6.83e-14								
344	UNIT EXIT CONCENTRATION (ppmw)	1.838e-06								
345										

BAE H2S Factor Summary of H2SSIM Inputs and Outputs

		H2SSI	M Inputs		Windspee	d: 3.55	mph			H2SSIM Outputs		
5/17/202	2											
		Zone 1	Zone 2	Zone 3						Zone 1 Zone 2	Zone 3	Total ASB
	DO	1.57	7 4.6	3 4.66		Main Inlet	Hardpip	e Units	H2S g/s	0.07 0.02	0.02	0.111 g/s
	Temp	87.5	2 83.9	1 80.19	Flow	25.11	0	.35 MGD				1723 ODTP
	рН	6.7	7 7.1	9 7.44	Total Sulfide	0.060	1	.06 mg/L				0.012 Ib/ODTP
	Length	968	3 120	8 1235	Sulfate	390		390 mg/L				
	Width	968	3 60-	4 617								
	Aerators	3	1 1	56								
	Total HP	232	5 112	5 450								
7/19/202	2										7 0	7 4 4 4 6 5
		Zone 1	Zone 2	Zone 3						Zone 1 Zone 2	Zone 3	I OTAL ASB
	DO	1.5	7 4.6	3 4.66	_	Main Inlet	Hardpip		H2S g/s	0.09 0.03	0.02	U.144 g/s
	Temp	96.2	7 93.3	7 89,26	Flow	25.32	0	.42 MGD				1900 ODTP
	рН	7.1	7 7.3	7 7.48	Total Sulfide	0.921	0.5	583 mg/L				0.014 ID/ODTP
	Length	96	8 120	8 1235	Sulfate	390		390 mg/L				
	Width	96	B 60	4 617								
	Aerators	3	1 1	56								
7/00/000	~											
//20/202	2	Zono 1	7000 0	7000 2						Zone 1 Zone 2	7000 3	Total ASB
	00	Zone 1	Zone Z	Zone s		Main Inlot	Hardnir	o Unite	H2S g/s		2016 3	
	Tomo	1.0	/ 4.0 0 01-0	J 4.00	Flow		пагорц		H25 9/5	0.00 0.00	0.02	1900 ODTP
	Temp	94.0	0 91.2 0 70	7 7 20	Total Sulfide	20.40	0	762 mg/l				
	Longth	7.1	0 7.2. B 120	2 7.59	Sulfate	300	0.1					0.011 10/0011
	Midth	90	B 60	A 617	Sullate	550		So mg/L				0.01
	Aoratore	30	0 00 1 1	4 017 5 6								0.01
	Aciditis	5		5 0								
7/21/202	2											
112 11202	L	Zone 1	Zone 2	Zone 3						Zone 1 Zone 2	Zone 3	Total ASB
	DO	1.5	7 4.6	3 4.66		Main Inlet	Hardpig	e Units	H2S a/s	0.06 0.03	0.02	0.111 a/s
	Temp	94.7	6 90.4	2 87.08	Flow	19.93	0	19 MGD				940 ODTP
	рН	7.1	0 7.1	9 7.35	Total Sulfide	0.094	0.0	625 ma/L				0.022 lb/ODTP
	Length	96	8 120	8 1235	Sulfate	390	1 1	390 mg/L				
	Width	96	8 60	4 617								
	Aerators	3	1 1	5 6								
		·	*DO are t	ased on avera	age of all DO readings fro	om 2021 and	2022 Su	bpart S pe	rformance testing.	AVG		0.015 Ib/ODTP

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

)ata Type 1. Site Ide	ntification		1.	Data Type 5. Zone Physi	cal and Chemical	Conditions						
Company Name New-Indy		Company Name New-In		Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Unit	5	Model Controls	
Facility Na	me	Catav	vba SC	Dissolved Oxygen	1.571780303	4.6275	4.659734848		mg/			
Basin Nar	Basin Name		SB	Temperature	87.52	83.91	80.19		F		Run H2SSIM	
Data Type 2. Model	Zone Informa	tion	The second	pH	6.77	7.19	7.44		s,u.			
Number of Zones	3 •			Redox Condition	Aerobic 💌	Aerobic *	Aerobic 💌	Aerobic 💌			View	
Zone Location of Hardpipe	1 🗸			Length	968	1208	1235		feet	•	Parameters Clear Input	
Type of Basin	ASB -	2. J. P.		Width	968	604	617		feet	•		
ata Type 3. Load Ch	aracteristics			Depth	4.5	3.2	3		feet	-	Sheet	
Loading Characteristics	Main Influent	Hardpipe	Units	Mixing	Moderat	Moderat	Moderat -					
Flow	25.11	0.35	MGD -	Number of Aerators	31	15	6					
Total Sulfide	0.06	1.057	mg/L 🝷	Total Horsepower	2325	1125	450		HP			
Sulfate	390	390	mg/L 🕶	Impellor Size	1.625	1.625	1.625		feet	•		
ata Type 4. Atmosp	heric Conditi	ons		Impellor RPM	1200	1200	1200		RPN			
Windspeed	3.55	mph 🝷		Diffused Air Flow	0	0	0		cms			
Ambient Temperature	79	F -		Weir Height	0	0	0		feet	•		

5/17/2022

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.111	gms/s
Total Emissions (H ₂ S)	7726.8	lbs/yr
Total Emissions (H ₂ S)	3.9	tons/yr
Total Emissions (H ₂ S)	3.5	tonnes/yr
Emission Flux (H ₂ S)	15.5	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.07	0.02	0.02		gms/s
Zone Emissions (H ₂ S)	4978.9	1486.3	1261.7	1.1	lbs/yr
Emission Flux (H ₂ S)	25.9	9.9	8.1		gms/m² yr
Liquid Conc. (Total Sulfide)	0.003	0.001	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	34.400	6.200	5.200		lbs/yr

5/17/2022

Current Parameters						
kgen	0.25					
ThetaGen	1.06					
KDO	0.05					
KSO4	10					
kanox	0.006					
ThetaOx	1.05					
m	1					
n	0.2					
MLVSS	272.2					
O ₂ Transfer Coeff.	2					
alpha 1	0.83					
alpha 2	0.6					

Percent Inlet Sulfide Removed -35.4%

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

7/19/2022

Data Type 1. Site Renuncation				Data Type 5. Zone Physi	cai and chemical	conditions						
Company N	ame	New	-Indy		Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Unit	5	Model Controls
Facility Na	Facility Name Catawba SC		Dissolved Oxygen	1.571780303	4.6275	4.659734848		mg/	£			
Basin Nar	Basin Name ASB			Temperature	96.27	93.37	89.26		F 💌		Run H2SSIM	
Data Type 2. Model	Zone Informat	tion	1	1	рH	7.17	7.37	7.48		s.u.	-	
Number of Zones	3 🔹				Redox Condition	Aerobic 💌	Aerobic 💌	Aerobic 💌	Aerobic 🝷			View
Zone Location of Hardpipe	1 .				Length	968	1208	1235		feet	•	Parameters
Type of Basin	ASB -	and the second second		Width	968	604	617		feet		Clear Input	
Data Type 3. Load Ch	aracteristics			-	Depth	4.5	3.2	3		feet	-	Sheet
Loading Characteristics	Main Influent	Hardpipe	Units		Mixing	Moderat	Moderat	Moderat -				The second
Flow	25.32	0.42	MGD	•	Number of Aerators	31	15	6				
Total Sulfide	0.921	0.583	mg/L	•	Total Horsepower	2325	1125	450		HP		
Sulfate	390	390	mg/L	-	Impellor Size	1.625	1.625	1.625		feet	•	
Data Type 4. Atmosp	heric Conditio	ons			Impellor RPM	1200	1200	1200		RPM	•	
Windspeed	3.55	mph 🔸			Diffused Air Flow	0	0	0		cms		
Ambient	79	F 🗣			Weir Height	0	0	0		feet	•	

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.145	gms/s
Total Emissions (H ₂ S)	10050.3	lbs/yr
Total Emissions (H ₂ S)	5.0	tons/yr
Total Emissions (H ₂ S)	4.6	tonnes/yr
Emission Flux (H ₂ S)	20.2	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.09	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	6430.8	1936.5	1683.0		lbs/yr
Emission Flux (H ₂ S)	33.5	13.0	10.8		gms/m² yr
Liquid Conc. (Total Sulfide)	0.005	0.000	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	60.200	6.100	5.400	say Ker	lbs/yr

7/19/2022

Current Parameters						
kgen	0.25					
ThetaGen	1.06					
KDO	0.05					
KSO4	10					
kanox	0.006					
ThetaOx	1.05					
m	1					
n	0.2					
MLVSS	272.2					
O ₂ Transfer Coeff.	2					
alpha 1	0.83					
alpha 2	0.6					

Percent Inlet Sulfide Removed 86.0%

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

7/20/2022

Data Type 1. Site Identification			Data Type 5. Zone Physi	cal and Chemical	Conditions							
Company N	iny Name New-Indy		Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Units		Model Controls		
Facility Na	Facility Name Catawba SC		Dissolved Oxygen	1.571780303	4.6275	4.659734848		mg/L		The second second		
Basin Nan	Basin Name ASB		Temperature	94.8	91.27	87.57		F	•	Run H2SSIM		
Data Type 2. Model 2	Zone informat	tion	19152	рH	7.1	7.22	7.39		s.u.			
Number of Zones	3 •	246		Redox Condition	Aerobic 💌	Aerobic 💌	Aerobic 💌	Aerobic -			View	
Zone Location of Hardpipe	1 -			Length	968	1208	1235		feet		Parameters	
Type of Basin	ASB 🗸			Width	968	604	617		feet	•	Clear Input	
Data Type 3. Load Ch	aracteristics		1.1	Depth	4.5	3.2	3		feet	-	Sheet	
Loading Characteristics	Main Influent	Hardpipe	Units	Mixing	Moderat	Moderat	Moderat -					
Flow	25.48	0.39	MGD -	Number of Aerators	31	15	6		100	N.		
Total Sulfide	0.053	0.762	mg/L 🕶	Total Horsepower	2325	1125	450		HP			
Sulfate	390	390	mg/L 💌	Impelior Size	1.625	1.625	1.625		feet	•		
Data Type 4. Atmospheric Conditions			Impellor RPM	1200	1200	1200		RPM				
Windspeed	3.55	mph 🔸		Diffused Air Flow	0	0	0		cms			
Ambient Temperature	79	F 🗸		Weir Height	0	0	0		feet			

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.111	gms/s
Total Emissions (H ₂ S)	7721.2	lbs/yr
Total Emissions (H ₂ S)	3.9	tons/yr
Total Emissions (H ₂ S)	3.5	tonnes/yr
Emission Flux (H_2S)	15.5	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.06	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	4266.3	1852.9	1602.0		lbs/yr
Emission Flux (H ₂ S)	22.2	12.4	10.3		gms/m² yr
Liquid Conc. (Total Sulfide)	0.002	0.001	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	26.800	6.300	5.600		lbs/yr

Current Parameters 0.25 kgen ThetaGen 1.06 KDO 0.05 KSO4 10 0.006 kanox ThetaOx 1.05 1 m n 0.2 MLVSS 272.2 O₂ Transfer Coeff. 2 alpha 1 0.83 alpha 2 0.6

7/20/2022

Percent Inlet Sulfide Removed -54.1%
NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

Data Type 1. Site Ide	ntification			Data Type 5. Zone Physi	ical and Chemical	Conditions					
Company N	lame	New	-Indy	Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Unit	s] [Model Controls
Facility Na	ime	Catav	vba SC	Dissolved Oxygen	1.571780303	4.6275	4.659734848		mg/		
Basin Na	me	A	SB	Temperature	94.76	90.42	87.08		F	•	Run H2SSIM
Data Type 2. Model	Zone Informat	tion		рН	7.1	7.19	7.35		s.u.		
Number of Zones	3 -			Redox Condition	Aerobic 💌	Aerobic 🔻	Aerobic 💌	Aerobic 💌			View
Zone Location of Hardpipe	1 -	43.94		Length	968	1208	1235		feet	•	Parameters
Type of Basin	ASB 🗸			Width	968	604	617	12,2-1	feet	•	Clear Input
Data Type 3. Load Cl	haracteristics			Depth	4.5	3.2	3		feet	•	Sheet
Loading Characteristics	Main Influent	Hardpipe	Units	Mixing	Moderat -	Moderat -	Moderat -				
Flow	19.93	0.19	MGD -	Number of Aerators	31	15	6				
Total Sulfide	0.094	0.625	mg/L 💌	Total Horsepower	2325	1125	450		HP		
Sulfate	390	390	mg/L 🝷	Impellor Size	1.625	1.625	1.625		feet	•	
Data Type 4. Atmosp	pheric Condition	ons	A PARA	Impellor RPM	1200	1200	1200		RPN		
Windspeed	3.55	mph 👻		Diffused Air Flow	0	0	0	24.24	cms	•	
Ambient Temperature	79	F -		Weir Height	0	0	0		feet	•	

7/21/2022

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.111	gms/s
Total Emissions (H ₂ S)	7700.8	lbs/yr
Total Emissions (H ₂ S)	3.9	tons/yr
Total Emissions (H ₂ S)	3.5	tonnes/yr
Emission Flux (H ₂ S)	15.5	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.06	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	4305.7	1814.2	1580.9		lbs/yr
Emission Flux (H ₂ S)	22.4	12.1	10.1		gms/m² yı
Liquid Conc. (Total Sulfide)	0.002	0.001	0.000	14581 34	mg/L
Liquid Sulfide Load (lbs/yr)	21.300	5.000	4.400		lbs/yr

Current Parameters kgen 0.25 ThetaGen 1.06 0.05 KDO 10 KSO4 kanox 0.006 ThetaOx 1.05 1 m n 0.2 MLVSS 272.2 O₂ Transfer Coeff. 2 alpha 1 0.83 alpha 2 0.6

Percent Inlet Sulfide Removed -27.1%

7/21/2022

			Methanol Emissions
Date of Subpart S	Air Stripping*	Pulp	Factor
Performance Testing	g/s	Production	lb/ODTP
7/9/2021	14.10	1694	1.59
7/10/2021	11.58	1609	1.37
7/11/2021	8.71	1356	1.22
10/26/2021	15.17	1523	1.90
10/27/2021	12.03	1463	1.57
10/28/2021	13.31	1675	1.51
10/29/2021	12.16	1749	1.32
2/14/2022	8.69	1612	1.03
2/15/2022	8.96	1441	1.18
2/16/2022	10.15	1424	1.36
5/4/2022	0.50	2090	0.05
5/5/2022	1.54	1954	0.15
5/6/2022	1.03	2121	0.09
8/9/2022	1.60	2104	0.15
8/10/2022	1.78	1987	0.17
8/11/2022	1.33	1631	0.15
9/27/2022	1.60	1602	0.19
9/28/2022	1.78	1816	0.19
9/29/2022	1.33	1944	0.13
10/18/2022	0.89	1609	0.11
10/19/2022	0.33	1610	0.04
10/20/2022	0.19	1738	0.02

Baseline Methanol Emissions Factor

1.50 lb/ODTP, 2021 average 0.33 lb/ODTP, 2022 average 0.92 lb/ODTP, BAE Factor

*Air Stripping (g/s) for each day of Subpart S performance testing in 2021 and 2022 are from the NCASI Form XIII calculations provided in the performance test reports.

WASTEWATER TREATMENT PLANT – SUPPORTING INFORMATION PROJECTED ACTUAL EMISSIONS

New Stripper Scenario - Projected Actual Emissions H₂S, TRS Compounds, and VOC New-Indy Catawba - Catawba, SC

Concentration Loadings	H2S, ppm	DMDS, ppm	DMS, ppm	MMC, ppm
No Hardpipe flow (foul or stripped)	N/A	N/A	N/A	N/A
ASB Influent (Wastewater)	0.25	0.09	0.20	0.0026
Flow Weighted Loading:	0.25	0.09	0.20	2.60E-03
WATER9 Results	H2S, g/s	DMDS, g/s	DMS, g/s	MMC, g/s
ASB Zone 1	0.07	0.03	0.15	2.13E-03
ASB Zone 2	0.03	5.03E-04	3.19E-03	3.77E-05
ASB Zone 3	0.02	9.42E-06	1.11E-04	1.22E-06
Total ASB	0.12	0.03	0.16	2.17E-03
PAE Emissions Factors	H2S, Ib/ODTP	DMDS, Ib/ODTP	DMS, Ib/ODTP	MMC, Ib/ODTP
Total ASB	1.03E-02	2.81E-03	1.36E-02	1.88E-04

Pulp Production	2200 ODTP/day
Total ASB Flow:	1116.47 L/s
Total ASB Flow:	25.48 MGD
Post-Project ASB Influent Flow:	25.48 MGD
Hardpipe Flow (Foul or Stripped Condensate)	0 MGD

	MW
H2S	34
DMDS	94
DMS	62
MMC	48

Type of unit is 1 Total water added at the unit (1/s)50 0 2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 61 4 Drop length to conduit (cm) 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 84 128 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 500 11 distance to next unit (cm) 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 12 15 radius of underflow conduit (cm) 16 Underflow T (C) 25 5 17 oscillation cycle time (min) 2 18 design collection velocities (ft/s) 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption Ω 9 unit recycle convergence number 200 10 oil molecular weight Ω 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:27:50 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature 34.08 (C) 295 3 length of aeration unit (m) 295 4 width of aeration unit (m) 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL DISULFIDE at 34.1 deg.C (93.3 deg.F)

18

32

```
hl= 0.001714 atm-m3/mol
                                vp = 45.945 mmHq (0.88868 psia)
       95.2 y/x
       0.068011 g/L gas per g/L liquid
   Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
                          dl= 1.041e-05 cm2/s dv= 0.088022 cm2/s
   kl = 0. L/g-hr
Compound flow rate from inlet water is 0.087838 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
The residence time in the unit is 30.325 hr.
   Biomass production
    The biomass production rate is 0.mg/hr. (0. mg/L)
    The fraction dissolved solids converted is 0. .
    The estimated biomass exit concentration is 0. mg/L.
        Quiescent wind shear surface Springer
The fetch to depth ratio is 237.766.
kl is estimated as 5.971e-06 m/s.
kg is estimated as 0.005598 m/s. Model: 2
kg is estimated as 0.005598 m/s. Model: 2
The Schmidt number is 1.70412.
The friction velocity is 37.398 m/s
kg is estimated as 0.012927 m/s. Model: 3
        Agitated surface
The rotation speed is 125.654 radians per second.
The rotation factor NRW is 2.052e+06.
The power number NPR is 7.881e-04.
The rotation factor NFR is 797.027.
kg (agitated) is estimated as 0.11564 m/s.
kl (agitated) is estimated as 0.017486 m/s.
    The specified and growth biomass is 0.3 \text{ g/L}.
 The effective KL (surface + diffused air) is 2.753e-04 m/s.
 The effective stripping time (surface + diffused air) is 84.752 minutes. (1.41254
 hrs.)
 The pump mixing time is 5 x the pumping recirculaion time, 0. min.
 The ratio of the mixing to the striping (surface + diffused air) is 0.
 The mean residence time is 1819.519 min. (30.325 hr.)
 The ratio of the pump mixing to the residence time is 0.
                                             0.11781
   KG aerated (m/s)
   KL aerated (m/s)
                                             0.017486
                                             0.005609
  KL OVERALL AERATED (m/s)
  KG quiescent (m/s)
                                            0.005703
  KL quiescent (m/s)
                                            5.971e-06
  KL OVERALL QUIESCENT (m/s)
                                            5.883e-06
  KL OVERALL (m/s)
                                            2.753e-04
                                            84.752
   air stripping time constant (min)
   FRACTION SURFACE VOLATILIZED
                                            0.36393
   FRACTION SUBMERGED VOLATILIZED
                                            0.
   TOTAL FRACTION VOLATILIZED
                                            0.36393
   FRACTION BIOLOGICALLY REMOVED
                                            0.61912
   FRACTION ABSORBED
                                            Ο.
   TOTAL AIR EMISSIONS (q/s)
                                            0.031967
                    (Mg/year)
                                            1.00811
   EMISSION FACTOR (g/cm2-s)
                                             3.673e-11
   UNIT EXIT CONCENTRATION (ppmw)
                                             0.001334
DETAILED CALCULATIONS at Unit 12 def.system exit st
Type: system exit stream
  Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
  Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New
  Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:27:50
COMPOUND: DIMETHYL DISULFIDE
Type of unit is system exit stream
1 Description of unit
                                            12
                                                  def.system exit st
   TOTAL AIR EMISSIONS (g/s)
                                             0.
                                  B-59
```

(Mg/year) 0. EMISSION FACTOR (g/cm2-s) 3.673e-11 UNIT EXIT CONCENTRATION (ppmw) 2.231e-06 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential New Stripper Permitting Emissions WWTP PAE New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:27:50 COMPOUND: DIMETHYL DISULFIDE Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 0 144 8 Subsurface entrance=1 9 subsurface exit =1 Ω 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 0 18 Assume equilibrium in unit, =1 0 19 pH (enter 0 for no pH adjustment) 8.9 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1116 1/s. Weight fraction down is 8.680001E-08 Gas concentration in 0 mol fraction. Gas flow 1116 L/s Weight fraction out at base of drop is 7.87078550837274E-08 fraction transferred in the drain drop from hub is .093228 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. fraction loss in waste3 drop to hub Ο. fraction loss in collection hub drop 0.093228 fraction loss in unit 0. fraction loss in line run 0. component upstream of unit, g/s 0. mol fract. headspace upstream (y) 0. headspace at conduit discharge, y 0. headspace end of conduit (y) 9.876e-20 mol fract. headspace vent base 2.233e-06 headspace flow out vent (cc/s) -1.116e+06 headspace flow down line (cc/s) 1.116e+06 KG surface (m/s) 1932.406 KL surface (m/s) 6.575e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.096869 total component into unit, g/s 0.087838 TOTAL AIR EMISSIONS (g/s) 0.009031 (Mg/year) 0.2848 EMISSION FACTOR (g/cm2-s) 3.673e-11 UNIT EXIT CONCENTRATION (ppmw) 0.078708 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:27:50 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3 B-60

2 Wastewater temperature (C) 30.01 3 length of aeration unit (m) 376 4 width of aeration unit (m) 188 5 depth of aeration unit (m) 0.91 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 6 7 Focal Humber of agitators in the unit 8 Power of agitation (each aerator, HP) 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 15 Departies files (mg/g bio-hr) 75 49.53 1200 0.83 0.83 Ω 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.42 Properties of DIMETHYL DISULFIDE at 30. deg.C (86. deg.F) hl= 0.00141 atm-m3/mol vp= 37.814 mmHg (0.7314 psia) 78.352 y/x 0.056726 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C 214 k1= 0. L/q-hr dl= 1.027e-05 cm2/s dv= 0.085991 cm2/sCompound flow rate from inlet water is 5.19e-05 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 16.011 hr. ____Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 329.675. kl is estimated as 5.918e-06 m/s. kg is estimated as 0.005575 m/s. Model: 2 kg is estimated as 0.005575 m/s. Model: 2 The Schmidt number is 1.74436. 231 The friction velocity is 37.398 m/s kg is estimated as 0.012742 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. 234 The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.1143 m/s. kl (agitated) is estimated as 0.015772 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 5.972e-05 m/s. The effective stripping time (surface + diffused air) is 253.944 minutes. (4.2324 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. 244 The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 960.664 min. (16.011 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.11644 KL aerated (m/s) 0.015772 KL OVERALL AERATED (m/s) KG quiescent (m/s) KL quiescent (m/s) KL OVERALL QUIESCENT (m/s) KL OVERALL (m/s) 0.004711 0.005679 5.918e-06 5.813e-06 5.972e-05 air stripping time constant (min) 253,944

FRACTION SURFACE VOLATILIZED 0.18149 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.18149 FRACTION BIOLOGICALLY REMOVED 0.77054 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 9.419e-06 2.97e-04 (Mg/year) EMISSION FACTOR (g/cm2-s) 1.332e-14 UNIT EXIT CONCENTRATION (ppmw) 2.231e-06 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:27:50 267 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 32.08 2 Wastewater temperature (C) 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 0.3 16 active biomass, aeration (g/l) 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of DIMETHYL DISULFIDE at 32.1 deg.C (89.7 deg.F) hl= 0.001558 atm-m3/mol vp=41.785 mmHq (0.80821 psia) 86.579 y/x 293 0.062258 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1=0. L/g-hrdl= 1.034e-05 cm2/s dv= 0.087022 cm2/s 296 Compound flow rate from inlet water is 0.001489 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. q/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 16.348 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 5.945e-06 m/s. kg is estimated as 0.005633 m/s. Model: 2 kg is estimated as 0.005633 m/s. Model: 2 The Schmidt number is 1.72371. The friction velocity is 37.398 m/s kg is estimated as 0.012836 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. B-62

319	kg (agitated)is estimated as 0.11498 m/s.				
320	kl (agitated)is estimated as 0.016622 m/s.				
321	The specified and growth biomass is 0.3 g/L.				
322	The effective KL (surface + diffused air)	is 1.598e-04 m/s.			
323	The effective stripping time (surface + d	liffused air) is 101.198 minutes.			
	(1.68663 hrs.)				
324	The pump mixing time is 5 x the pumping r	ecirculaion time, 0. min.			
325	The ratio of the mixing to the striping (surface + diffused air) is 0.			
326	The mean residence time is 980.894 min. (16.348 hr.)			
327	The ratio of the pump mixing to the resid	lence time is 0.			
328	KG aerated (m/s)	0.11714			
329	KL aerated (m/s)	0.016622			
330	KL OVERALL AERATED (m/s)	0.005152			
331	KG quiescent (m/s)	0.005738			
332	KL quiescent (m/s)	5.945e-06			
333	KL OVERALL QUIESCENT (m/s)	5.85e-06			
334	KL OVERALL (m/s)	1.598e-04			
335	air stripping time constant (min)	101.198			
336	FRACTION SURFACE VOLATILIZED	0.33782			
337	FRACTION SUBMERGED VOLATILIZED	0.			
338	TOTAL FRACTION VOLATILIZED	0.33782			
339	FRACTION BIOLOGICALLY REMOVED	0.62732			
340	FRACTION ABSORBED	0.			
341	TOTAL AIR EMISSIONS (g/s)	5.03e-04			
342	(Mg/year)	0.015863			
343	EMISSION FACTOR (g/cm2-s)	7.429e-13			
344	UNIT EXIT CONCENTRATION (ppmw)	4.65e-05			
345					

Type of unit is 50 0 1 Total water added at the unit (l/s) 2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 25 6 Temperature of air (C) 7 Drain air velocity (ft/min) 84 8 manhole air velocity (ft/min) 128 9 Conduit air velocity (ft/min) 66 447 10 Wind speed (cm/s at 10 m) 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 .006 14 friction factor gas 12 15 radius of underflow conduit (cm) 25 16 Underflow T (C) 5 17 oscillation cycle time (min) 18 design collection velocities (ft/s) 2 19 design branch line fraction full . 4 24 Type of unit is 0 8 HL partition flag=1, adjust for sorption 200 9 unit recycle convergence number 10 oil molecular weight Ο 0 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential New Stripper Permitting Emissions WWTP PAE New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:26 COMPOUND: DIMETHYL SULFIDE (DMS) 43 Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 47 295 4 width of aeration unit (m) 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 0.3 16 active biomass, aeration (g/l) 17 If covered, then enter 1 0 18 special input \cap 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL SULFIDE (DMS) at 34.1 deg.C (93.3 deg.F)

B-64

hl= 0.002924 atm-m3/mol vp= 704.653 mmHg (13.629 psia) 162.463 y/x 0.11606 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.504e-05 cm2/s dv= 0.14765 cm2/s k1=0. L/a-hrCompound flow rate from inlet water is 0.19163 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 30.325 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Ouiescent wind shear surface ___ Springer_ The fetch to depth ratio is 237.766. kl is estimated as 7.634e-06 m/s. kg is estimated as 0.007917 m/s. Model: 2 kg is estimated as 0.007917 m/s. Model: 2 The Schmidt number is 1.01591. The friction velocity is 37.398 m/s kg is estimated as 0.017873 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.14978 m/s. kl (agitated) is estimated as 0.021024 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 4.77e-04 m/s. The effective stripping time (surface + diffused air) is 48.915 minutes. (0.81526 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1819.519 min. (30.325 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.15258 KL aerated (m/s) 0.021024 KL OVERALL AERATED (m/s) 0.009769 KG quiescent (m/s) 0.008066 KL guiescent (m/s) 7.634e-06 KL OVERALL QUIESCENT (m/s) 7.574e-06 KL OVERALL (m/s) 4.77e-04 air stripping time constant (min) 48.915 FRACTION SURFACE VOLATILIZED 0.80146 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.80146 FRACTION BIOLOGICALLY REMOVED 0.17699 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 0.15358 (Mg/year) 4.84331 EMISSION FACTOR (g/cm2-s) 1.765e - 10UNIT EXIT CONCENTRATION (ppmw) 0.0037 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:26 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is system exit stream 1 Description of unit 12 def.system exit st TOTAL AIR EMISSIONS (g/s) 0.

(Mg/year) 0. EMISSION FACTOR (g/cm2-s) 1.765e-10 UNIT EXIT CONCENTRATION (ppmw) 1.485e-05 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:26 134 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s) 0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 Ω 8 Subsurface entrance=1 0 9 subsurface exit =1 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 Ω 18 Assume equilibrium in unit, =1 0 19 pH (enter 0 for no pH adjustment) 8.9 154Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1116 l/s. Weight fraction down is 1.989E-07 Gas concentration in 0 mol fraction. Gas flow 1116 L/s 159 Weight fraction out at base of drop is 1.71707119336225E-07 fraction transferred in the drain drop from hub is .136716 161 162 163 164 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. fraction loss in waste3 drop to hub Ο. fraction loss in collection hub drop 0.13672 165 166 fraction loss in unit 0. fraction loss in line run component upstream of unit, g/s mol fract. headspace upstream (y) 0. Ο. Ο. headspace at conduit discharge, y 0. headspace end of conduit (y) mol fract. headspace vent base 4.229e-19 1.138e-05 headspace flow out vent (cc/s) headspace flow down line (cc/s) -1.116e+06 1.116e+06 174 KG surface (m/s) 2728.591 KL surface (m/s) 8.51e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.22197 178 total component into unit, g/s 0.19163 TOTAL AIR EMISSIONS (g/s) 0.030347 (Mg/year) 0.95703 EMISSION FACTOR (g/cm2-s) 1.765e-10 UNIT EXIT CONCENTRATION (ppmw) 0.17171 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:26 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
2 Wastewater temperature (C)
                                                                            30.01
             3 length of aeration unit (m)
                                                                            376
          4 width of aeration unit (m)
5 depth of aeration unit (m)
6 Area of agitation (each aerator,m2)
7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Aeration air flow (m3/s)
            4 width of aeration unit (m)
                                                                            188
                                                                            0.91
                                                                            135
                                                                            6
                                                                           75
                                                                            49.53
                                                                           1200
                                                                           0.83
                                                                          0.83
                                                                           Ο
                                                                           19
            15 Aeration air flow (m3/s)
                                                                            0
            16 active biomass, aeration (g/l)
17 If covered, then enter 1
204
                                                                           0.3
                                                                            Ω
             18 special input
                                                                            0
             19 pH (enter 0 for no pH adjustment)
                                                                            7.42
            Properties of DIMETHYL SULFIDE (DMS) at 30. deg.C (86. deg.F)
                hl = 0.002519 \text{ atm} - m3/mol vp= 606.985 mmHg (11.74 psia)
                       139.945 y/x
                       0.10132 g/L gas per g/L liquid
                Temperature adjustment factor = 1.046 ^(T-25), deg. C
                 k1= 0. L/g-hr dl= 1.485e-05 cm2/s dv= 0.14425 cm2/s
        Compound flow rate from inlet water is 1.869e-04 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
            The residence time in the unit is 16.011 hr.
              Biomass production
                   The biomass production rate is 0.mg/hr. (0. mg/L)
                   The fraction dissolved solids converted is 0. .
                   The estimated biomass exit concentration is 0. mg/L.
                   Quiescent wind shear surface Springer
          The fetch to depth ratio is 329.675.
            kl is estimated as 7.566e-06 m/s.
           kg is estimated as 0.007884 m/s. Model: 2
           kg is estimated as 0.007884 m/s. Model: 2
The Schmidt number is 1.03989.
           The friction velocity is 37.398 m/s
kg is estimated as 0.017611 m/s. Model: 3
                       Agitated surface
           The rotation speed is 125.654 radians per second.
            The rotation factor NRW is 2.052e+06.
             The power number NPR is 7.881e-04.
              The rotation factor NFR is 797.027.
              kg (agitated) is estimated as 0.14804 m/s.
             kl (agitated) is estimated as 0.018962 m/s.
                   The specified and growth biomass is 0.3 \text{ g/L}.
               The effective KL (surface + diffused air) is 1.053e-04 m/s.
               The effective stripping time (surface + diffused air) is 144.073 minutes.
               (2.40122 hrs.)
               The pump mixing time is 5 x the pumping recirculaion time, 0. min.
               The ratio of the mixing to the striping (surface + diffused air) is 0.
               The mean residence time is 960.664 min. (16.011 hr.)
             The ratio of the pump mixing to the residence time is 0.
              KG aerated (m/s)
                                                                      0.15081
                KL aerated (m/s)
                                                                     0.018962
               KL OVERALL AERATED (m/s)
                                                                     0.00854
               KG quiescent (m/s)
KL quiescent (m/s)
                                                                     0.008032
                                                                     7.566e-06
               KL OVERALL QUIESCENT (m/s)
                                                                     7.497e-06
               KL OVERALL (m/s)
                                                                     1.053e-04
                air stripping time constant (min)
                                                                     144.073
```

B-67

FRACTION SURFACE VOLATILIZED 0.59112 FRACTION SUBMERGED VOLATILIZED Ο. TOTAL FRACTION VOLATILIZED 0.59112 FRACTION BIOLOGICALLY REMOVED 0.32022 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 1.105e-04 (Mg/year) 0.003484 EMISSION FACTOR (g/cm2-s) 1.563e-13 UNIT EXIT CONCENTRATION (ppmw) 1.485e-05 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:26 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 2 Wastewater temperature (C) 32.08 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 274 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 15 Aeration air flow (m3/s) 16 active biomass, aeration (g/l) 1200 0.83 0.83 Ο 19 284 0 0.3 17 If covered, then enter 1 18 special input 0 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of DIMETHYL SULFIDE (DMS) at 32.1 deg.C (89.7 deg.F) vp= 655.201 mmHg (12.673 psia) hl= 0.002719 atm-m3/mol 151.062 y/x 0.10863 g/L gas per g/L liquid 294 Temperature adjustment factor = $1.046 \wedge (T-25)$, deq. C kl = 0. L/q-hrdl= 1.495e-05 cm2/s dv= 0.14597 cm2/s Compound flow rate from inlet water is 0.004129 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 16.348 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.6e-06 m/s. kg is estimated as 0.007966 m/s. Model: 2 kg is estimated as 0.007966 m/s. Model: 2 The Schmidt number is 1.02758. The friction velocity is 37.398 m/s kg is estimated as 0.017744 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.14892 m/s	•			
320	kl (agitated) is estimated as 0.019984 m/	s.			
321	The specified and growth biomass is 0.3 g/L .				
322	The effective KL (surface + diffused ai	r) is 2.809e-04 m/s.			
323	The effective stripping time (surface +	diffused air) is 57.552 minutes. (0.9592			
	hrs.)				
324	The pump mixing time is 5 x the pumping	recirculaion time, 0. min.			
325	The ratio of the mixing to the striping	(surface + diffused air) is 0.			
326	The mean residence time is 980.894 min.	(16.348 hr.)			
327	The ratio of the pump mixing to the res	idence time is 0.			
328	KG aerated (m/s)	0.15171			
329	KL aerated (m/s)	0.019984			
330	KL OVERALL AERATED (m/s)	0.009148			
331	KG quiescent (m/s)	0.008115			
332	KL quiescent (m/s)	7.6e-06			
333	KL OVERALL QUIESCENT (m/s)	7.537e-06			
334	KL OVERALL (m/s)	2.809e-04			
335	air stripping time constant (min)	57.552			
336	FRACTION SURFACE VOLATILIZED	0.7715			
337	FRACTION SUBMERGED VOLATILIZED	0.			
338	TOTAL FRACTION VOLATILIZED	0.7715			
339	FRACTION BIOLOGICALLY REMOVED	0.18324			
340	FRACTION ABSORBED	0.			
341	TOTAL AIR EMISSIONS (g/s)	0.003185			
342	(Mg/year)	0.10045			
343	EMISSION FACTOR (g/cm2-s)	4.704e-12			
344	UNIT EXIT CONCENTRATION (ppmw)	1.675e-04			
3 4 E					

Type of unit is 50 1 Total water added at the unit (l/s) 0 2 Area of openings at unit (cm2) 50 5 3 Radius of drop pipe (cm) 61 4 Drop length to conduit (cm) 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 84 8 manhole air velocity (ft/min) 128 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 15 radius of underflow conduit (cm) 12 16 Underflow T (C) 25 17 oscillation cycle time (min) 5 2 18 design collection velocities (ft/s) 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight 0 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:58 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 11 1 Description of unit ASB Zone 1 2 Wastewater temperature 34.08 (C) 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 31 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of METHANETHIOL(methyl mercaptan) at 34.1 deg.C (93.3 deg.F)

hl= 0.004158 atm-m3/mol vp= 2272.142 mmHg (43.948 psia) 230.99 y/x 0.16502 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.525e-05 cm2/s dv= 0.23702 cm2/s k1=0. L/g-hrCompound flow rate from inlet water is 0.002397 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 30.325 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 237.766. kl is estimated as 7.703e-06 m/s. kg is estimated as 0.010871 m/s. Model: 2 kg is estimated as 0.010871 m/s. Model: 2 The Schmidt number is 0.63285. The friction velocity is 37.398 m/s kg is estimated as 0.024173 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.18977 m/s. kl (agitated) is estimated as 0.021167 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 6.265e-04 m/s. The effective stripping time (surface + diffused air) is 37.242 minutes. (0.62071 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1819.519 min. (30.325 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s)0.19332 KL aerated (m/s) 0.021167 KL OVERALL AERATED (m/s) 0.012876 KG quiescent (m/s) 0.011075 KL quiescent (m/s) 7.703e-06 KL OVERALL QUIESCENT (m/s) 7.672e-06 KL OVERALL (m/s) 6.265e-04 air stripping time constant (min) 37.242 FRACTION SURFACE VOLATILIZED 0.88816 FRACTION SUBMERGED VOLATILIZED Ο. TOTAL FRACTION VOLATILIZED 0.88816 0.09366 FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 0.002129 (Mg/year) 0.06713 EMISSION FACTOR (g/cm2-s) 2.446e-12 UNIT EXIT CONCENTRATION (ppmw) 3.904e-05 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:58 COMPOUND: METHANETHIOL (methyl mercaptan) Type of unit is system exit stream 1 Description of unit 12 def.system exit st TOTAL AIR EMISSIONS (g/s) 0. B-71

(Mg/year) 0. EMISSION FACTOR (g/cm2-s) 2.446e-12 UNIT EXIT CONCENTRATION (ppmw) 1.24e-07 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:58 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is open hub drain 13 default open hub d 1 Description of unit 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 8 Subsurface entrance=1 0 0 9 subsurface exit =1 12 10 radius of underflow conduit (cm) 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 \cap 18 Assume equilibrium in unit, =1 0 19 pH (enter 0 for no pH adjustment) 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1116 l/s. Weight fraction down is 2.6E-09 Gas concentration in 0 mol fraction. Gas flow 1116 L/s Weight fraction out at base of drop is 2.14759568570224E-09 fraction transferred in the drain drop from hub is .174002 161 162 163 164 165 166 167 168 Ο. fraction loss in wastel drop to hub fraction loss in waste2 drop to hub Ο. fraction loss in waste3 drop to hub 0. fraction loss in collection hub drop 0.174 fraction loss in unit Ο. fraction loss in unit fraction loss in line run component upstream of unit, g/s mol fract. headspace upstream (y) headspace at conduit discharge, y headspace end of conduit (y) mol fract. headspace vent base headspace flow out vent (cc/s) headspace flow down line (cc/s) KG surface (m/s) Ο. 0. 0. Ο. 6.896e-21 171 2.445e-07 -1.116e+06 1.116e+06 3741.46 KL surface (m/s)3/41.46KL surface (m/s)8.591e-0flow of waste down hub (1/s)0.component flow in waste into unit (g/s)0.002902total component into unit, g/s0.002397TOTAL ALP EMISSIONS(-(-)) 8.591e-09 TOTAL AIR EMISSIONS (g/s) 5.049e-04 (Mg/year) 0.015922 EMISSION FACTOR (g/cm2-s) 2.446e-12 UNIT EXIT CONCENTRATION (ppmw) 0.002148 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:58 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
30.01
           2 Wastewater temperature (C)
                                                                376
           3 length of aeration unit (m)
           4 width of aeration unit (m)
                                                                188
           5 depth of aeration unit (m)
                                                                0.91
           6 Area of agitation (each aerator,m2)
                                                               135
          7 Total number of agitators in the unit
                                                                6
         / Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
                                                                75
          9 Impeller diameter (cm)
                                                                49.53
         10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
                                                                1200
                                                                0.83
                                                               0.83
                                                               0
           14 Overall biorate (mg/g bio-hr)
                                                               19
           15 Aeration air flow (m3/s)
                                                                Ω
           16 active biomass, aeration (g/1)
                                                                0.3
           17 If covered, then enter 1
                                                                Ω
                                                                0
           18 special input
           19 pH (enter 0 for no pH adjustment)
                                                                7.42
208
         Properties of METHANETHIOL(methyl mercaptan) at 30. deg.C (86. deg.F)
              hl= 0.003687 atm-m3/mol vp= 2014.774 mmHg (38.97 psia)
                    204.826 y/x
                    0.14829 g/L gas per g/L liquid
               Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
               k1= 0. L/g-hr dl= 1.505e-05 cm2/s dv= 0.23155 cm2/s
          Compound flow rate from inlet water is 1.671e-06 g/s.
            Compound flow rate from inlet vent is 0. g/s.
           Compound flow rate from inlet duct is 0. g/s.
           Submerged aeration rate from inlet vent is 0. m3/s.
           Total submerged aeration is 0. m3/s.
           The residence time in the unit is 16.011 hr.
                Biomass production
                The biomass production rate is 0.mg/hr. (0. mg/L)
                The fraction dissolved solids converted is 0. .
224
                The estimated biomass exit concentration is 0. mg/L.
                    Quiescent wind shear surface _____ Springer____
            The fetch to depth ratio is 329.675.
227
            kl is estimated as 7.635e-06 m/s.
            kg is estimated as 0.010826 m/s. Model: 2
            kg is estimated as 0.010826 m/s. Model: 2
           The Schmidt number is 0.64779.
           The friction velocity is 37.398 m/s
           kg is estimated as 0.023814 m/s. Model: 3
                    Agitated surface
          The rotation speed is 125.654 radians per second.
234
           The rotation factor NRW is 2.052e+06.
           The power number NPR is 7.881e-04.
            The rotation factor NFR is 797.027.
            kg (agitated) is estimated as 0.18756 m/s.
            kl (agitated) is estimated as 0.019092 m/s.
                The specified and growth biomass is 0.3 \text{ g/L}.
             The effective KL (surface + diffused air) is 1.391e-04 m/s.
             The effective stripping time (surface + diffused air) is 109.038 minutes.
             (1.81731 hrs.)
             The pump mixing time is 5 x the pumping recirculaion time, 0. min.
             The ratio of the mixing to the striping (surface + diffused air) is 0.
             The mean residence time is 960.664 min. (16.011 hr.)
             The ratio of the pump mixing to the residence time is 0.
              KG aerated (m/s)
                                                           0.19108
              KL aerated (m/s)
                                                           0.019092
              KL OVERALL AERATED (m/s)
                                                          0.011483
             KG quiescent (m/s)
KL quiescent (m/s)
KL OVERALL QUIESCENT (m/s)
                                                           0.011029
                                                           7.635e-06
                                                           7.6e-06
             KL OVERALL (m/s)
                                                          1.391e-04
              air stripping time constant (min)
                                                          109.038
```

B-73

FRACTION SURFACE VOLATILIZED 0.7296 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.7296 FRACTION BIOLOGICALLY REMOVED 0.18759 FRACTION ABSORBED Ο. TOTAL AIR EMISSIONS (g/s) 1.219e-06 3.844e-05 (Mg/year) EMISSION FACTOR (q/cm2-s) 1.724e-15 UNIT EXIT CONCENTRATION (ppmw) 1.24e-07 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\New Stripper Scenario\ASB New Stripper V5 3/14/2023 1:52:24 PM 19:28:58 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 2 Wastewater temperature 32.08 (C) 3 length of aeration unit (m) 368 184 4 width of aeration unit (m) 0.97 5 depth of aeration unit (m) 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 0.3 285 16 active biomass, aeration (g/l) 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of METHANETHIOL(methyl mercaptan) at 32.1 deg.C (89.7 deg.F) hl= 0.003921 atm-m3/mol vp= 2142.771 mmHg (41.446 psia) 217.838 y/x 0.15664 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1=0. L/g-hrdl= 1.515e-05 cm2/s dv= 0.23433 cm2/s Compound flow rate from inlet water is 4.357e-05 g/s. 297 Compound flow rate from inlet vent is 0. g/s. 298 Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 16.348 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.67e-06 m/s. kg is estimated as 0.010938 m/s. Model: 2 kg is estimated as 0.010938 m/s. Model: 2 The Schmidt number is 0.64013. The friction velocity is 37.398 m/s kg is estimated as 0.023996 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.18868 m/s	S.
320	kl (agitated) is estimated as 0.020121 m,	/s.
321	The specified and growth biomass is	0.3 g/L.
322	The effective KL (surface + diffused as	ir) is 3.715e-04 m/s.
323	The effective stripping time (surface -	+ diffused air) is 43.518 minutes. (0.72529
	hrs.)	
324	The pump mixing time is 5 x the pumping	g recirculaion time, 0. min.
325	The ratio of the mixing to the striping	g (surface + diffused air) is 0.
326	The mean residence time is 980.894 min.	. (16.348 hr.)
327	The ratio of the pump mixing to the res	sidence time is 0.
328	KG aerated (m/s)	0.19222
329	KL aerated (m/s)	0.020121
330	KL OVERALL AERATED (m/s)	0.012174
331	KG quiescent (m/s)	0.011143
332	KL quiescent (m/s)	7.67e-06
333	KL OVERALL QUIESCENT (m/s)	7.637e-06
334	KL OVERALL (m/s)	3.715e-04
335	air stripping time constant (min)	43.518
336	FRACTION SURFACE VOLATILIZED	0.86431
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.86431
339	FRACTION BIOLOGICALLY REMOVED	0.097342
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	3.766e-05
342	(Mg/year)	0.001188
343	EMISSION FACTOR (g/cm2-s)	5.562e-14
344	UNIT EXIT CONCENTRATION (ppmw)	1.497e-06
345		

Backup Stripper Scenario - Projected Actual Emissions H₂S, TRS Compounds, and VOC New-Indy Catawba - Catawba, SC

Concentration Loadings	H2S, ppm	DMDS, ppm	DMS, ppm	MMC, ppm
Design Foul Condensate Loadings to Backup				
Stripper	147	15.00	17.00	16.00
Backup Stripper TRS Removal Efficiency	0.98	0.98	0.98	0.98
Stripped Condensate to Hardpipe	2.93	0.30	0.34	0.32
Avg. ASB Inlet (2021 and 2022)	0.25	0.09	0.20	0.0026
Flow Weighted Loading:	0.38	0.10	0.21	0.02
WATER9 Results	H2S, g/s	DMDS, g/s	DMS, g/s	MMC, g/s
ASB Zone 1	0.08	0.04	0.17	0.01
ASB Zone 2	0.03	6.14E-04	3.60E-03	2.73E-04
ASB Zone 3	0.02	1.20E-05	1.31E-04	9.23E-06
Total ASB	0.13	0.04	0.17	0.02
PAE Emissions Factors	H2S, Ib/ODTP	DMDS, Ib/ODTP	DMS, Ib/ODTP	MMC, Ib/ODTP
Total ASB	1.09E-02	3.28E-03	1.47E-02	1.30E-03

Post-Project Stripped Condensate Flow: Post-Project Stripped Condensate Flow: Post-Project ASB Influent Flow: Total ASB Flow: Total ASB Flow: Pulp Production 850 gpm 1.22 MGD 25.48 MGD 26.71 MGD 1170 L/s 2200 ODTP/day

	MW
H2S	34
DMDS	94
DMS	62
MMC	48

Type of unit is 1 Total water added at the unit (1/s) 50 0 50 2 Area of openings at unit (cm2) 5 3 Radius of drop pipe (cm) 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 84 1213 128 66 10 Wind speed (cm/s at 10 m) 11 distance to next unit (cm) 447 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 15 radius of underflow conduit (cm) 12 25 16 Underflow T (C) 5 17 oscillation cycle time (min) 2 18 design collection velocities (ft/s) 19 design branch line fraction full . 4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight 0 11 oil density (g/cc) Ο 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. z=equid 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 13 NaUT 1=mass tr. 2=equil Ω 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 11:39:37 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 4 width of aeration unit (m)
5 depth of aeration unit (m)
6 Area of agitation (each aerator,m2)
7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr) 295 1.4 135 7 Total number of agitators in the unit 31 75 49.53 1200 0.83 0.83 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL DISULFIDE at 34.1 deg.C (93.3 deg.F)

2.8

42

46

47

```
hl= 0.001714 atm-m3/mol
                               vp=45.945 mmHg (0.88868 psia)
       95.2 y/x
       0.068011 g/L gas per g/L liquid
   Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
                          dl= 1.041e-05 cm2/s dv= 0.088022 cm2/s
   kl = 0. L/q-hr
Compound flow rate from inlet water is 0.10249 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
The residence time in the unit is 28.926 hr.
   Biomass production
    The biomass production rate is 0.mg/hr. (0. mg/L)
    The fraction dissolved solids converted is 0. .
    The estimated biomass exit concentration is 0. mg/L.
        Quiescent wind shear surface Springer
The fetch to depth ratio is 237.766.
kl is estimated as 5.971e-06 m/s.
kg is estimated as 0.005598 m/s. Model: 2
kg is estimated as 0.005598 m/s. Model: 2
The Schmidt number is 1.70412.
The friction velocity is 37.398 m/s
kg is estimated as 0.012927 m/s. Model: 3
        Agitated surface
The rotation speed is 125.654 radians per second.
The rotation factor NRW is 2.052e+06.
The power number NPR is 7.881e-04.
The rotation factor NFR is 797.027.
kg (agitated) is estimated as 0.11564 m/s.
kl (agitated) is estimated as 0.017486 m/s.
   The specified and growth biomass is 0.3 \text{ g/L}.
 The effective KL (surface + diffused air) is 2.753e-04 m/s.
 The effective stripping time (surface + diffused air) is 84.752 minutes. (1.41254
 hrs.)
 The pump mixing time is 5 x the pumping recirculaion time, 0. min.
 The ratio of the mixing to the striping (surface + diffused air) is 0.
 The mean residence time is 1735.541 min. (28.926 hr.)
 The ratio of the pump mixing to the residence time is 0.
  KG aerated (m/s)
                                            0.11781
  KL aerated (m/s)
                                            0.017486
  KL OVERALL AERATED (m/s)
                                            0.005609
  KG quiescent (m/s)
                                            0.005703
 KL quiescent (m/s)
                                            5.971e-06
 KL OVERALL QUIESCENT (m/s)
                                            5.883e-06
 KL OVERALL (m/s)
                                            2.753e-04
  air stripping time constant (min)
                                            84.752
  FRACTION SURFACE VOLATILIZED
                                            0.36364
  FRACTION SUBMERGED VOLATILIZED
                                            Ο.
  TOTAL FRACTION VOLATILIZED
                                            0.36364
  FRACTION BIOLOGICALLY REMOVED
                                            0.6186
  FRACTION ABSORBED
                                            Ο.
  TOTAL AIR EMISSIONS (g/s)
                                            0.037268
                    (Mg/year)
                                            1.17529
  EMISSION FACTOR (g/cm2-s)
                                            4.282e-11
  UNIT EXIT CONCENTRATION (ppmw)
                                            0.001555
DETAILED CALCULATIONS at Unit 12 def.system exit st
Type: system exit stream
  Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
  Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old
  Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 11:39:37
COMPOUND: DIMETHYL DISULFIDE
Type of unit is system exit stream
1 Description of unit
                                           12
                                                 def.system exit st
   TOTAL AIR EMISSIONS (g/s)
                                            0.
                                 B-78
```

106

120

(Mg/year) 0. EMISSION FACTOR (g/cm2-s) 4.282e-11 UNIT EXIT CONCENTRATION (ppmw) 2.847e-06 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 11:39:37 COMPOUND: DIMETHYL DISULFIDE Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 144 8 Subsurface entrance=1 0 0 9 subsurface exit =1 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 Ω 18 Assume equilibrium in unit, =1 Ο 19 pH (enter 0 for no pH adjustment) 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 9.66E-08 Gas concentration in 0 mol fraction. Gas flow 1170 L/s 159 Weight fraction out at base of drop is 8.7594214355091E-08 fraction transferred in the drain drop from hub is .093228 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub Ο. fraction loss in waste3 drop to hub 0. fraction loss in collection hub drop 0.093228 fraction loss in unit 0. fraction loss in line run -7.27e-08 component upstream of unit, g/s 0. mol fract. headspace upstream (y) 0. headspace at conduit discharge, y headspace end of conduit (y) mol fract. headspace vent base 0. 1.082e-19 2.486e-06 headspace flow out vent (cc/s) -1.17e+06 headspace flow down line (cc/s) 1.17e+06 174KG surface (m/s) 2007.233 KL surface (m/s) 6.787e-09 flow of waste down hub (l/s) 0. component flow in waste into unit (g/s) 0.11302 total component into unit, g/s 0.10249 TOTAL AIR EMISSIONS (g/s) 0.010537 (Mg/year) 0.33229 EMISSION FACTOR (g/cm2-s) 4.282e-11 UNIT EXIT CONCENTRATION (ppmw) 0.087594 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 11:39:37 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
30.01
           2 Wastewater temperature (C)
                                                                   376
           3 length of aeration unit (m)
           4 width of aeration unit (m)
                                                                   188
           5 depth of aeration unit (m)
                                                                   0.91
           6 Area of agitation (each aerator,m2)
                                                                   135
         7 Total number of agitators in the unit
8 Power of agitation (each aerator, HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Decetion air flow (m3/s)
          7 Total number of agitators in the unit
                                                                   6
                                                                   75
                                                                   49.53
                                                                   1200
                                                                   0.83
                                                                   0.83
                                                                  0
                                                                  19
           15 Aeration air flow (m3/s)
                                                                   Ω
                                                                   0.3
           16 active biomass, aeration (g/1)
           17 If covered, then enter 1
                                                                   Ο
            18 special input
                                                                    0
                                                                    7.42
            19 pH (enter 0 for no pH adjustment)
           Properties of DIMETHYL DISULFIDE at 30. deg.C (86. deg.F)
               hl= 0.00141 atm-m3/mol vp= 37.814 mmHg (0.7314 psia)
                    78.352 y/x
                     0.056726 g/L gas per g/L liquid
213
                Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
               k1= 0. L/g-hr dl= 1.027e-05 cm2/s dv= 0.085991 cm2/s
           Compound flow rate from inlet water is 6.639e-05 g/s.
            Compound flow rate from inlet vent is 0. g/s.
           Compound flow rate from inlet duct is 0. g/s.
           Submerged aeration rate from inlet vent is 0. m3/s.
            Total submerged aeration is 0. m3/s.
219
            The residence time in the unit is 15.272 hr.
            ____Biomass production
                 The biomass production rate is 0.mg/hr. (0. mg/L)
                 The fraction dissolved solids converted is 0. .
                 The estimated biomass exit concentration is 0. mg/L.
                     Quiescent wind shear surface Springer
             The fetch to depth ratio is 329.675.
            kl is estimated as 5.918e-06 m/s.
            kg is estimated as 0.005575 m/s. Model: 2
            kg is estimated as 0.005575 m/s. Model: 2
            The Schmidt number is 1.74436.
            The friction velocity is 37.398 m/s
           kg is estimated as 0.012742 m/s. Model: 3
                     Agitated surface
           The rotation speed is 125.654 radians per second.
234
            The rotation factor NRW is 2.052e+06.
            The power number NPR is 7.881e-04.
             The rotation factor NFR is 797.027.
             kg (agitated) is estimated as 0.1143 m/s.
            kl (agitated) is estimated as 0.015772 m/s.
                 The specified and growth biomass is 0.3 \text{ g/L}.
              The effective KL (surface + diffused air) is 5.972e-05 m/s.
              The effective stripping time (surface + diffused air) is 253.944 minutes. (4.2324
              hrs.)
              The pump mixing time is 5 x the pumping recirculaion time, 0. min.
              The ratio of the mixing to the striping (surface + diffused air) is 0.
              The mean residence time is 916.326 min. (15.272 hr.)
              The ratio of the pump mixing to the residence time is 0.
              KG aerated (m/s)
                                                              0.11644
                KL aerated (m/s)
                                                              0.015772
               KL OVERALL AERATED (m/s)
                                                              0.004711
              KG quiescent (m/s)
KL quiescent (m/s)
KL OVERALL QUIESCENT (m/s)
KL OVERALL (m/s)
                                                             0.005679
                                                             5.918e-06
                                                             5.813e-06
                                                             5.972e-05
               air stripping time constant (min)
                                                             253.944
```

FRACTION SURFACE VOLATILIZED 0.18107 FRACTION SUBMERGED VOLATILIZED Ο. TOTAL FRACTION VOLATILIZED 0.18107 FRACTION BIOLOGICALLY REMOVED 0.76875 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 1.202e-05 (Mg/year) 3.791e-04 1.7e-14 EMISSION FACTOR (g/cm2-s) UNIT EXIT CONCENTRATION (ppmw) DETAILED CALCULATIONS at Unit 18 ASB Zone 2 UNIT EXIT CONCENTRATION (ppmw) 2.847e-06 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 11:39:37 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 32.08 2 Wastewater temperature (C) 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 274 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 75 49.53 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 0 283 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 287 18 special input \cap 19 pH (enter 0 for no pH adjustment) 7.24 289 Properties of DIMETHYL DISULFIDE at 32.1 deg.C (89.7 deg.F) hl= 0.001558 atm-m3/mol vp= 41.785 mmHg (0.80821 psia) 86.579 y/x 0.062258 g/L gas per g/L liquid 294 Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1=0. L/q-hrdl= 1.034e-05 cm2/s dv= 0.087022 cm2/s Compound flow rate from inlet water is 0.00182 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 5.945e-06 m/s. 309 kg is estimated as 0.005633 m/s. Model: 2 kg is estimated as 0.005633 m/s. Model: 2 The Schmidt number is 1.72371. The friction velocity is 37.398 m/s kg is estimated as 0.012836 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.11498 m/s.	
320	kl (agitated)is estimated as 0.016622 m/s.	
321	The specified and growth biomass is 0.3 g/L .	
322	The effective KL (surface + diffused air) is 1.598e-04 m/s.	
323	The effective stripping time (surface + o	diffused air) is 101.198 minutes.
	(1.68663 hrs.)	
324	The pump mixing time is 5 x the pumping a	recirculaion time, 0. min.
325	The ratio of the mixing to the striping	(surface + diffused air) is 0.
326	The mean residence time is 935.622 min.	(15.594 hr.)
327	The ratio of the pump mixing to the residence time is 0.	
323	KG aerated (m/s)	0.11714
329	KL aerated (m/s)	0.016622
330	KL OVERALL AERATED (m/s)	0.005152
331	KG quiescent (m/s)	0.005738
332	KL quiescent (m/s)	5.945e-06
333	KL OVERALL QUIESCENT (m/s)	5.85e-06
334	KL OVERALL (m/s)	1.598e-04
335	air stripping time constant (min)	101.198
336	FRACTION SURFACE VOLATILIZED	0.33725
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.33725
339	FRACTION BIOLOGICALLY REMOVED	0.62627
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	6.138e-04
342	(Mg/year)	0.019356
343	EMISSION FACTOR (g/cm2-s)	9.065e-13
344	UNIT EXIT CONCENTRATION (ppmw)	5.674e-05
345		

Type of unit is 1 Total water added at the unit (1/s)50 0 50 2 Area of openings at unit (cm2) 5 3 Radius of drop pipe (cm) 4 Drop length to conduit (cm) 61 40 5 Humidity of inlet air (%) 6 Temperature of air (C) 25 7 Drain air velocity (ft/min) 84 128 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 15 radius of underflow conduit (cm) 12 16 Underflow T (C) 25 5 17 oscillation cycle time (min) 2 18 design collection velocities (ft/s) 19 design branch line fraction full .4 Type of unit is 8 HL partition flag=1, adjust for sorption 0 200 9 unit recycle convergence number 0 10 oil molecular weight 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:24:18 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 31 75 8 Power of agitation (each aerator, HP) 9 Impeller diameter (cm) 49.53 1200 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 0.83 0.83 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04 Properties of DIMETHYL SULFIDE (DMS) at 34.1 deg.C (93.3 deg.F)

42

```
hl= 0.002924 atm-m3/mol
                                            vp=704.653 mmHg (13.629 psia)
                   162.463 v/x
                   0.11606 g/L gas per g/L liquid
               Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
                                     dl= 1.504e-05 cm2/s dv= 0.14765 cm2/s
               k1 = 0. L/q-hr
            Compound flow rate from inlet water is 0.20746 g/s.
            Compound flow rate from inlet vent is 0. g/s.
            Compound flow rate from inlet duct is 0. g/s.
            Submerged aeration rate from inlet vent is 0. m3/s.
           Total submerged aeration is 0. m3/s.
           The residence time in the unit is 28.926 hr.
                Biomass production
                The biomass production rate is 0.mg/hr. (0. mg/L)
                The fraction dissolved solids converted is 0. .
                The estimated biomass exit concentration is 0. mg/L.
                    Quiescent wind shear surface Springer
           The fetch to depth ratio is 237.766.
           kl is estimated as 7.634e-06 m/s.
           kg is estimated as 0.007917 m/s. Model: 2
           kq is estimated as 0.007917 m/s. Model: 2
           The Schmidt number is 1.01591.
           The friction velocity is 37.398 m/s
           kg is estimated as 0.017873 m/s. Model: 3
                   Agitated surface
           The rotation speed is 125.654 radians per second.
           The rotation factor NRW is 2.052e+06.
           The power number NPR is 7.881e-04.
           The rotation factor NFR is 797.027.
           kg (agitated) is estimated as 0.14978 m/s.
           kl (agitated) is estimated as 0.021024 m/s.
               The specified and growth biomass is 0.3 \text{ g/L}.
            The effective KL (surface + diffused air) is 4.77e-04 m/s.
            The effective stripping time (surface + diffused air) is 48.915 minutes. (0.81526
            hrs.)
            The pump mixing time is 5 x the pumping recirculaion time, 0. min.
            The ratio of the mixing to the striping (surface + diffused air) is 0.
            The mean residence time is 1735.541 min. (28.926 hr.)
            The ratio of the pump mixing to the residence time is 0.
102
              KG aerated (m/s)
                                                        0.15258
                                                        0.021024
              KL aerated (m/s)
104
              KL OVERALL AERATED (m/s)
                                                        0.009769
             KG quiescent (m/s)
                                                        0.008066
             KL quiescent (m/s)
                                                        7.634e-06
             KL OVERALL QUIESCENT (m/s)
                                                        7.574e-06
             KL OVERALL (m/s)
                                                        4.77e-04
                                                        48.915
              air stripping time constant (min)
              FRACTION SURFACE VOLATILIZED
                                                        0.80063
              FRACTION SUBMERGED VOLATILIZED
                                                        0.
              TOTAL FRACTION VOLATILIZED
                                                        0.80063
              FRACTION BIOLOGICALLY REMOVED
                                                        0.17681
114
              FRACTION ABSORBED
                                                        0.
                                                        0.1661
              TOTAL AIR EMISSIONS (g/s)
                                (Mg/year)
                                                        5.23815
              EMISSION FACTOR (q/cm2-s)
                                                        1.909e-10
              UNIT EXIT CONCENTRATION (ppmw)
                                                        0.004001
           DETAILED CALCULATIONS at Unit 12 def.system exit st
           Type: system exit stream
              Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
              Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old
              Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:24:18
           COMPOUND: DIMETHYL SULFIDE (DMS)
           Type of unit is system exit stream
           1 Description of unit
                                                       12
                                                             def.system exit st
              TOTAL AIR EMISSIONS (q/s)
                                                        0.
```

(Mg/year) 0. EMISSION FACTOR (g/cm2-s) 1.909e-10 UNIT EXIT CONCENTRATION (ppmw) 1.753e-05 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:24:18 134 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s) 0 140 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 61 6 Drop length to conduit (cm) 7 Open surface=1 1 8 Subsurface entrance=1 Ω 0 9 subsurface exit =1 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 0 18 Assume equilibrium in unit, =1 0 19 pH (enter 0 for no pH adjustment) 8.9 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 2.054E-07 Gas concentration in 0 mol fraction. Gas flow 1170 L/s Weight fraction out at base of drop is 1.77318497496617E-07 fraction transferred in the drain drop from hub is .136716 161 162 163 164 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. fraction loss in waste3 drop to hub Ο. fraction loss in collection hub drop 0.13672 fraction loss in unit Ο. fraction loss in line run 0 Ο. component upstream of unit, g/s mol fract. headspace upstream (y) 0. headspace at conduit discharge, y 0. headspace end of conduit (y) 4.299e-19 mol fract. headspace vent base 1.175e-05 172 headspace flow out vent (cc/s) -1.17e+06 headspace flow down line (cc/s) 1.17e+06 KG surface (m/s) 2834.248 KL surface (m/s) 8.784e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.24032 total component into unit, g/s 0.20746 TOTAL AIR EMISSIONS (q/s) 0.032855 (Mg/year) 1.03613 EMISSION FACTOR (g/cm2-s) 1.909e-10 UNIT EXIT CONCENTRATION (ppmw) 0.17732 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:24:18 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
2 Wastewater temperature (C)
                                                                  30.01
           3 length of aeration unit (m)
                                                                  376
           4 width of aeration unit (m)
                                                                 188
           5 depth of aeration unit (m)
                                                                 0.91
           6 Area of agitation (each aerator,m2)
                                                                 135
           7 Total number of agitators in the unit
                                                                  6
         7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Aeration air flow (m3/s)
                                                                 75
                                                                 49.53
                                                                 1200
                                                                 0.83
                                                                 0.83
                                                                 0
                                                                19
                                                                 0
           16 active biomass, aeration (g/l)
                                                                 0.3
           17 If covered, then enter 1
                                                                  0
           18 special input
                                                                  0
            19 pH (enter 0 for no pH adjustment)
                                                                  7.42
209
          Properties of DIMETHYL SULFIDE (DMS) at 30. deg.C (86. deg.F)
              hl= 0.002519 atm-m3/mol vp= 606.985 mmHg (11.74 psia)
                    139.945 y/x
                    0.10132 g/L gas per g/L liquid
               Temperature adjustment factor = 1.046 ^(T-25), deg. C
               kl= 0. L/g-hr dl= 1.485e-05 cm2/s dv= 0.14425 cm2/s
          Compound flow rate from inlet water is 2.217e-04 g/s.
            Compound flow rate from inlet vent is 0. g/s.
          Compound flow rate from inlet duct is 0. g/s.
          Submerged aeration rate from inlet vent is 0. m3/s.
            Total submerged aeration is 0. m3/s.
           The residence time in the unit is 15.272 hr.
            ____Biomass production
                The biomass production rate is 0.mg/hr. (0. mg/L)
                 The fraction dissolved solids converted is 0. .
                 The estimated biomass exit concentration is 0. mg/L.
                    Quiescent wind shear surface Springer
            The fetch to depth ratio is 329.675.
            kl is estimated as 7.566e-06 m/s.
            kg is estimated as 0.007884 m/s. Model: 2
            kg is estimated as 0.007884 m/s. Model: 2
            The Schmidt number is 1.03989.
            The friction velocity is 37.398 m/s
          kg is estimated as 0.017611 m/s. Model: 3
                    Agitated surface
          The rotation speed is 125.654 radians per second.
234
            The rotation factor NRW is 2.052e+06.
            The power number NPR is 7.881e-04.
            The rotation factor NFR is 797.027.
            kg (agitated) is estimated as 0.14804 m/s.
            kl (agitated) is estimated as 0.018962 m/s.
                The specified and growth biomass is 0.3 g/L.
             The effective KL (surface + diffused air) is 1.053e-04 m/s.
             The effective stripping time (surface + diffused air) is 144.073 minutes.
             (2.40122 hrs.)
             The pump mixing time is 5 x the pumping recirculaion time, 0. min.
             The ratio of the mixing to the striping (surface + diffused air) is 0.
             The mean residence time is 916.326 min. (15.272 hr.)
             The ratio of the pump mixing to the residence time is 0.
              KG aerated (m/s)
                                                            0.15081
              KL aerated (m/s)
                                                            0.018962
              KL OVERALL AERATED (m/s)
                                                            0.00854
             KG quiescent (m/s)
                                                            0.008032
             KL quiescent (m/s)
                                                            7.566e-06
             KL OVERALL QUIESCENT (m/s)
                                                           7.497e-06
             KL OVERALL (m/s)
                                                           1.053e-04
              air stripping time constant (min)
                                                            144.073
```

FRACTION SURFACE VOLATILIZED 0.5886 FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.5886 0.31886 FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 1.305e-04 (Mg/year) 0.004115 EMISSION FACTOR (g/cm2-s) 1.846e-13 1.753e-05 UNIT EXIT CONCENTRATION (ppmw) DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:24:18 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 18 ASB Zone 2 1 Description of unit 32.08 2 Wastewater temperature (C) 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 0.83 12 aerator effectiveness, alpha 0 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) Ο 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 289 Properties of DIMETHYL SULFIDE (DMS) at 32.1 deg.C (89.7 deg.F) hl= 0.002719 atm-m3/mol vp= 655.201 mmHg (12.673 psia) 151.062 y/x 0.10863 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1=0. L/q-hrdl= 1.495e-05 cm2/s dv= 0.14597 cm2/s Compound flow rate from inlet water is 0.004681 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.6e-06 m/s. kg is estimated as 0.007966 m/s. Model: 2 kg is estimated as 0.007966 m/s. Model: 2 The Schmidt number is 1.02758. The friction velocity is 37.398 m/s kg is estimated as 0.017744 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.14892 m/s	
320	kl (agitated)is estimated as 0.019984 m/s.	
321	The specified and growth biomass is 0.3 g/L .	
322	The effective KL (surface + diffused ai	r) is 2.809e-04 m/s.
323	The effective stripping time (surface +	diffused air) is 57.552 minutes. (0.9592
	hrs.)	
324	The pump mixing time is 5 x the pumping	recirculaion time, 0. min.
325	The ratio of the mixing to the striping	(surface + diffused air) is 0.
326	The mean residence time is 935.622 min.	(15.594 hr.)
327	The ratio of the pump mixing to the residence time is 0.	
328	KG aerated (m/s)	0.15171
329	KL aerated (m/s)	0.019984
330	KL OVERALL AERATED (m/s)	0.009148
331	KG quiescent (m/s)	0.008115
332	KL quiescent (m/s)	7.6e-06
333	KL OVERALL QUIESCENT (m/s)	7.537e-06
334	KL OVERALL (m/s)	2.809e-04
335	air stripping time constant (min)	57.552
336	FRACTION SURFACE VOLATILIZED	0.76981
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.76981
339	FRACTION BIOLOGICALLY REMOVED	0.18284
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	0.003604
342	(Mg/year)	0.11365
343	EMISSION FACTOR (g/cm2-s)	5.322e-12
344	UNIT EXIT CONCENTRATION (ppmw)	1.895e-04
345		
Type of unit is 50 0 1 Total water added at the unit (1/s)2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) $4 \cap$ 6 Temperature of air (C) 25 7 Drain air velocity (It/MIN, 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 84 128 66 10 Wind speed (cm/s at 10 m) 447 11 distance to next unit (cm) 500 12 slope of underflow conduit .015 13 friction factor liquid .016 14 friction factor gas .006 15 radius of underflow conduit (cm) 12 25 16 Underflow T (C) 5 17 oscillation cycle time (min) 2 18 design collection velocities (ft/s) .4 19 design branch line fraction full Type of unit is 8 HL partition flag=1, adjust for sorption 0 9 unit recycle convergence number 200 10 oil molecular weight 0 11 oil density (g/cc) 0 12 NaUT 1=municipal 2=industrial 3=turb. 0 13 NaUT 1=mass tr. 2=equil 0 13 NaUT 1=mass tr. 2=equil 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:25:00 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 8 Power of agitation (each aerator, HP) 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 7 Total number of agitators in the unit 31 75 49.53 1200 0.83 0.83 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input Ο 19 pH (enter 0 for no pH adjustment) 7.04 Properties of METHANETHIOL(methyl mercaptan) at 34.1 deg.C (93.3 deg.F)

43

44

```
hl= 0.004158 atm-m3/mol
                                vp = 2272.142 \text{ mmHg} (43.948 \text{ psia})
       230.99 v/x
       0.16502 g/L gas per g/L liquid
   Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
                          dl= 1.525e-05 cm2/s dv= 0.23702 cm2/s
   kl = 0. L/q-hr
Compound flow rate from inlet water is 0.016622 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
The residence time in the unit is 28.926 hr.
    Biomass production
    The biomass production rate is 0.mg/hr. (0. mg/L)
    The fraction dissolved solids converted is 0. .
    The estimated biomass exit concentration is 0. mg/L.
        Quiescent wind shear surface Springer
The fetch to depth ratio is 237.766.
kl is estimated as 7.703e-06 m/s.
kg is estimated as 0.010871 m/s. Model: 2
kg is estimated as 0.010871 m/s. Model: 2
The Schmidt number is 0.63285.
The friction velocity is 37.398 m/s
kg is estimated as 0.024173 m/s. Model: 3
        Agitated surface
The rotation speed is 125.654 radians per second.
The rotation factor NRW is 2.052e+06.
The power number NPR is 7.881e-04.
The rotation factor NFR is 797.027.
kg (agitated) is estimated as 0.18977 m/s.
kl (agitated) is estimated as 0.021167 m/s.
    The specified and growth biomass is 0.3 \text{ g/L}.
 The effective KL (surface + diffused air) is 6.265e-04 m/s.
 The effective stripping time (surface + diffused air) is 37.242 minutes. (0.62071
 hrs.)
 The pump mixing time is 5 x the pumping recirculaion time, 0. min.
 The ratio of the mixing to the striping (surface + diffused air) is 0.
 The mean residence time is 1735.541 min. (28.926 hr.)
 The ratio of the pump mixing to the residence time is 0.
  KG aerated (m/s)
                                             0.19332
  KL aerated (m/s)
                                             0.021167
  KL OVERALL AERATED (m/s)
                                             0.012876
  KG quiescent (m/s)
                                             0.011075
  KL quiescent (m/s)
                                             7.703e-06
  KL OVERALL QUIESCENT (m/s)
                                             7.672e-06
  KL OVERALL (m/s)
                                             6.265e-04
  air stripping time constant (min)
                                             37.242
  FRACTION SURFACE VOLATILIZED
                                             0.88738
  FRACTION SUBMERGED VOLATILIZED
                                             Ο.
  TOTAL FRACTION VOLATILIZED
                                             0.88738
                                             0.093577
  FRACTION BIOLOGICALLY REMOVED
  FRACTION ABSORBED
                                             0.
  TOTAL AIR EMISSIONS (g/s)
                                             0.01475
                                             0.46517
                    (Mq/year)
   EMISSION FACTOR (g/cm2-s)
                                             1.695e-11
   UNIT EXIT CONCENTRATION (ppmw)
                                             2.705e-04
DETAILED CALCULATIONS at Unit 12 def.system exit st
Type: system exit stream
  Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
  Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Old
  Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:25:00
COMPOUND: METHANETHIOL(methyl mercaptan)
Type of unit is system exit stream
1 Description of unit
                                            12
                                                  def.system exit st
   TOTAL AIR EMISSIONS (q/s)
                                             0.
                                  B-90
```

(Mg/year) Ω. 1.695e-11 EMISSION FACTOR (q/cm2-s) UNIT EXIT CONCENTRATION (ppmw) 9.387e-07 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential New Stripper Permitting Emissions \WWTP \PAE \Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:25:00 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 61 6 Drop length to conduit (cm) 7 Open surface=1 1 8 Subsurface entrance=1 0 144 9 subsurface exit =1 0 146 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 147 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 0 18 Assume equilibrium in unit, =1 0 19 pH (enter 0 for no pH adjustment) 8.9 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 1.72E-08 Gas concentration in 0 mol fraction. Gas flow 1170 L/s Weight fraction out at base of drop is 1.42071711698917E-08 fraction transferred in the drain drop from hub is .174002 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub Ο. fraction loss in waste3 drop to hub Ο. 0.174 fraction loss in collection hub drop fraction loss in unit Ο. fraction loss in line run 0. component upstream of unit, g/s 0. mol fract. headspace upstream (y) headspace at conduit discharge, y 0. 0. headspace end of conduit (y) mol fract. headspace vent base 4.491e-20 1.618e-06 headspace flow out vent (cc/s) -1.17e+06 headspace flow down line (cc/s) KG surface (m/s) 1.17e+06 3886.338 KL surface (m/s) 8.868e-09 flow of waste down hub (l/s) 0. component flow in waste into unit (g/s) 0.020124 total component into unit, g/s 0.016622 179 TOTAL AIR EMISSIONS (g/s) 0.003502 (Mg/year) 0.11043 EMISSION FACTOR (q/cm2-s) 1.695e-11 UNIT EXIT CONCENTRATION (ppmw) 0.014207 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:25:00 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3

```
2 Wastewater temperature (C)
                                                                                                              30.01
                                                                                                             376
                   3 length of aeration unit (m)
4 width of aeration unit (m)

5 depth of aeration unit (m)

6 Area of agitation (each aerator,m2)

7 Total number of agitators in the unit

8 Power of agitation (each aerator,HP)

9 Impeller diameter (cm)

10 Impeller rotation (RPM)

10 Impeller rotation (RPM)

12 aerator effectiveness, alpha

20 12 aerator effectiveness, alpha

20 13 if there is plug flow, enter 1

20 14 Overall biorate (mg/g bio-hr)

20 15 Aeration air flow (m3/s)

20 16 active biomass, aeration (g/l)

20 17 If covered, then enter 1

20 18 special input

20 19 pH (enter 0 for no pH adjustment)
                   4 width of aeration unit (m)
                                                                                                             188
                                                                                                             0.91
                                                                                                             135
                                                                                                              6
                                                                                                             75
                                                                                                             49.53
                                                                                                             1200
                                                                                                             0.83
                                                                                                          0.83
                                                                                                           0
                                                                                                            19
                                                                                                             0
                                                                                                           0.3
                                                                                                             0
                                                                                                              0
                     19 pH (enter 0 for no pH adjustment)
                                                                                                              7.42
                  Properties of METHANETHIOL(methyl mercaptan) at 30. deg.C (86. deg.F)
                    hl= 0.003687 atm-m3/mol vp= 2014.774 mmHg (38.97 psia)
                                  204.826 y/x
                                  0.14829 g/L gas per g/L liquid
                     Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
k1= 0. L/g-hr dl= 1.505e-05 \text{ cm}2/\text{s} dv= 0.23155 \text{ cm}2/\text{s}
                Compound flow rate from inlet water is 1.27e-05 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
The residence time in the unit is 15.272 hr.
                     ____Biomass production
                            The biomass production rate is 0.mg/hr. (0. mg/L)
                            The fraction dissolved solids converted is 0. .
                             The estimated biomass exit concentration is 0. mg/L.
Quiescent wind shear surface __Springer_226The fetch to depth ratio is 329.675.227kl is estimated as 7.635e-06 m/s.228kg is estimated as 0.010826 m/s. Model: 2229kg is estimated as 0.010826 m/s. Model: 2230The Schmidt number is 0.64779.231The friction velocity is 37.398 m/s232kg is estimated as 0.023814 m/s. Model: 3233__Agitated surface234The rotation speed is 125.654 radians per second.235The power number NPR is 7.881e-04.236The rotation factor NFR is 797.027.239kg (agitated)is estimated as 0.18756 m/s.
                             Quiescent wind shear surface Springer
                     kg (agitated) is estimated as 0.18756 m/s.
                   kl (agitated)is estimated as 0.019092 m/s.
                             The specified and growth biomass is 0.3 \text{ g/L}.
                      The effective KL (surface + diffused air) is 1.391e-04 m/s.
                       The effective stripping time (surface + diffused air) is 109.038 minutes.
                       (1.81731 hrs.)
                       The pump mixing time is 5 x the pumping recirculaion time, 0. min.
                       The ratio of the mixing to the striping (surface + diffused air) is 0.
                    The mean residence time is 916.326 min. (15.272 hr.)
                    The ratio of the pump mixing to the residence time is 0.
                      KG aerated (m/s)
                                                                                                    0.19108
                       KL aerated (m/s)
KL OVERALL AERATED (m/s)
                                                                                                    0.019092
                                                                                                    0.011483
                       KG quiescent (m/s)
KL quiescent (m/s)
                                                                                                    0.011029
                                                                                                   7.635e-06
                        KL OVERALL QUIESCENT (m/s)
                                                                                                   7.6e-06
                        KL OVERALL (m/s)
                                                                                                  1.391e-04
                        air stripping time constant (min)
                                                                                                   109.038
```

B-92

0.72669 FRACTION SURFACE VOLATILIZED FRACTION SUBMERGED VOLATILIZED 0. TOTAL FRACTION VOLATILIZED 0.72669 FRACTION BIOLOGICALLY REMOVED 0.18684 FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (q/s) 9.23e-06 2.911e-04 (Mg/year) EMISSION FACTOR (g/cm2-s) 1.306e-14 UNIT EXIT CONCENTRATION (ppmw) 9.387e-07 DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential/New Stripper Permitting/Emissions/WWTP/PAE/Old Stripper Scenario\ASB Old Stripper V7 3/16/2023 1:51:43 PM 19:25:00 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 2 Wastewater temperature 32.08 (C) 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 5 depth of aeration unit (m) 0.97 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 15 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 279 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 \cap 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of METHANETHIOL(methyl mercaptan) at 32.1 deg.C (89.7 deg.F) hl= 0.003921 atm-m3/mol vp= 2142.771 mmHg (41.446 psia) 217.838 y/x 0.15664 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.515e-05 cm2/s dv= 0.23433 cm2/s k1=0. L/q-hrCompound flow rate from inlet water is 3.165e-04 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.67e-06 m/s. kg is estimated as 0.010938 m/s. Model: 2 kg is estimated as 0.010938 m/s. Model: 2 The Schmidt number is 0.64013. The friction velocity is 37.398 m/s kg is estimated as 0.023996 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027.

319	kg (agitated)is estimated as 0.18868 m/s	5 .
320	kl (agitated) is estimated as 0.020121 m/	's.
321	The specified and growth biomass is	0.3 g/L.
322	The effective KL (surface + diffused ai	r) is 3.715e-04 m/s.
323	The effective stripping time (surface +	diffused air) is 43.518 minutes. (0.72529
	hrs.)	
324	The pump mixing time is 5 x the pumping	recirculaion time, 0. min.
325	The ratio of the mixing to the striping	(surface + diffused air) is 0.
326	The mean residence time is 935.622 min.	(15.594 hr.)
327	The ratio of the pump mixing to the res	sidence time is 0.
328	KG aerated (m/s)	0.19222
329	KL aerated (m/s)	0.020121
330	KL OVERALL AERATED (m/s)	0.012174
331	KG quiescent (m/s)	0.011143
332	KL quiescent (m/s)	7.67e-06
333	KL OVERALL QUIESCENT (m/s)	7.637e-06
334	KL OVERALL (m/s)	3.715e-04
335	air stripping time constant (min)	43.518
336	FRACTION SURFACE VOLATILIZED	0.86271
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.86271
339	FRACTION BIOLOGICALLY REMOVED	0.097161
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	2.731e-04
342	(Mg/year)	0.008611
343	EMISSION FACTOR (g/cm2-s)	4.033e-13
344	UNIT EXIT CONCENTRATION (ppmw)	1.086e-05
345		

No Stripper Scenario - Projected Actual Emissions H₂S, TRS Compounds, and VOC New-Indy Catawba - Catawba, SC

Concentration Loadings	H2S, ppm	DMDS, ppm	DMS, ppm	MMC, ppm
Design Foul Condensate Loadings (prior to H2O2)	147	15.00	17.00	16.00
Predicted % Reduction from H ₂ O ₂	0.99	MMC converted into DMDS	0.90	0.99
Foul Condensate (after H ₂ O ₂)	1.47	30.51	1.70	0.16
Avg. ASB Inlet (2021 and 2022)	0.25	0.09	0.20	0.0026
Flow Weighted Loading:	0.31	1.48	0.27	9.82E-03
H2SSIM/WATER9 Results	H2S, g/s	DMDS, g/s	DMS, g/s	MMC, g/s
ASB Zone 1	0.08	0.57	0.22	8.40E-03
ASB Zone 2	0.03	9.43E-03	4.70E-03	1.56E-04
ASB Zone 3	0.02	1.85E-04	1.70E-04	5.26E-06
Total ASB	0.12	0.58	0.22	8.56E-03
PAE Emissions Factors	H2S, Ib/ODTP	DMDS, Ib/ODTP	DMS, Ib/ODTP	MMC, Ib/ODTP
Total ASB	1.06E-02	5.04E-02	1.92E-02	7.42E-04

Post-Project Foul Condensate Flow:		850	gom
Post-Project Foul Condensate Flow:		1.22	MGD
Post-Project ASB Influent Flow:		25.48	MGD
Total ASB Flow:		26.71	MGD
Total ASB Flow:		1170	L/s
Pulp Production		2200	ODTP/day
			MW
	H2S		34
	DMDS		94
	DMS		62
	MMC		48

Led at the unit openings at unit (cm2) addius of drop pipe (cm) 4 Drop length to conduit (cm) 5 Humidity of inlet air (%) 6 Temperature of air (C) 7 Drain air velocity (ft/min) 18 manhole air velocity (ft/min) 19 Conduit air velocity (ft/min) 10 Wind speed (cm/s at 10 m) 11 distance to next unit (cm' 12 slope of underflow 13 friction fac' 14 frict' 15 Type of unit is 1 Total water added at the unit (1/s) 50 0 2 Area of openings at unit (cm2) 50 5 61 40 25 84 128 66 447 500 .015 .016 .006 12 15 radius of underflow conduit (cm) 16 Underflow T (C) 25 20 21 22 17 oscillation cycle time (min) 5 2 18 design collection velocities (ft/s) 19 design branch line fraction full .4 Type of unit is 8 HL partition flag=1, adjust for sorption 9 unit recycle convergence number 0 200 10 oil molecular weight 11 oil density (g/cc) 0 0 12NAUT 1=municipal 2=industrial3=t3013NaUT 1=mass tr. 2=equil3114parts biomass per 1000 parts COD3215oil water partition method 0=owpc3316use UNIFAC aqueous data base =13417specify mass transfer for unit, =13518Use biomass for unit option, =13619biogrowth Monod half concentration 12 NaUT 1=municipal 2=industrial 3=turb. 0 0 19 biogrowth Monod half concentration ppm 30 DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:20:20 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 1 Description of unit 11 ASB Zone 1 2 Wastewater temperature (C) 34.08 3 length of aeration unit (m) 295 4 width of aeration unit (m) 295 5 depth of aeration unit (m) 1.4 6 Area of agitation (each aerator,m2) 135 7 Total number of agitators in the unit 8 Power of agitation (each aerator,HP) 31 75 49.53 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 1200 0.83 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 0.83 0 19 14 Overall biorate (mg/g bio-hr) 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04

42

47

```
Properties of DIMETHYL DISULFIDE at 34.1 deg.C (93.3 deg.F)
   hl = 0.001714 \text{ atm} - m3/mol vp = 45.945 \text{ mmHg} (0.88868 \text{ psia})
       95.2 y/x
       0.068011 g/L gas per g/L liquid
   Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
   k1= 0. L/g-hr dl= 1.041e-05 cm2/s dv= 0.088022 cm2/s
Compound flow rate from inlet water is 1.57133 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s.
The residence time in the unit is 28.926 hr.
    Biomass production
    The biomass production rate is 0.mg/hr. (0. mg/L)
    The fraction dissolved solids converted is 0. .
    The estimated biomass exit concentration is 0. mg/L.
        Quiescent wind shear surface Springer
The fetch to depth ratio is 237.766.
kl is estimated as 5.971e-06 m/s.
kg is estimated as 0.005598 m/s. Model: 2
kg is estimated as 0.005598 m/s. Model: 2
The Schmidt number is 1.70412.
The friction velocity is 37.398 m/s
kg is estimated as 0.012927 m/s. Model: 3
       Agitated surface
The rotation speed is 125.654 radians per second.
The rotation factor NRW is 2.052e+06.
The power number NPR is 7.881e-04.
The rotation factor NFR is 797.027.
kg (agitated) is estimated as 0.11564 m/s.
kl (agitated) is estimated as 0.017486 m/s.
    The specified and growth biomass is 0.3 g/L.
 The effective KL (surface + diffused air) is 2.753e-04 m/s.
 The effective stripping time (surface + diffused air) is 84.752 minutes. (1.41254
 hrs.)
 The pump mixing time is 5 x the pumping recirculaion time, 0. min.
 The ratio of the mixing to the striping (surface + diffused air) is 0.
 The mean residence time is 1735.541 min. (28.926 hr.)
 The ratio of the pump mixing to the residence time is 0.
  KG aerated (m/s)
                                            0.11781
  KL aerated (m/s)
                                            0.017486
 KL OVERALL AERATED (m/s)
                                            0.005609
                                            0.005703
 KG quiescent (m/s)
 KL quiescent (m/s)
                                            5.971e-06
 KL OVERALL QUIESCENT (m/s)
                                            5.883e-06
 KL OVERALL (m/s)
                                            2.753e-04
                                            84.752
  air stripping time constant (min)
  FRACTION SURFACE VOLATILIZED
                                            0.36452
 FRACTION SUBMERGED VOLATILIZED
                                            0.
  TOTAL FRACTION VOLATILIZED
                                            0.36452
 FRACTION BIOLOGICALLY REMOVED
                                            0.61768
 FRACTION ABSORBED
                                            0.
  TOTAL AIR EMISSIONS (g/s)
                                            0.57278
                    (Mg/year)
                                            18.063
   EMISSION FACTOR (g/cm2-s)
                                            6.582e-10
  UNIT EXIT CONCENTRATION (ppmw)
                                            0.023907
DETAILED CALCULATIONS at Unit 12 def.system exit st
Type: system exit stream
  Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
  Poe Privileged and Confidential\New Stripper
  Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7
  3/16/2023 1:47:24 PM 19:20:20
COMPOUND: DIMETHYL DISULFIDE
Type of unit is system exit stream
1 Description of unit
                                           12
                                                 def.system exit st
```

84

114

TOTAL AIR EMISSIONS (q/s) Ο. (Mg/year) Ο. EMISSION FACTOR (g/cm2-s) 6.582e-10 UNIT EXIT CONCENTRATION (ppmw) 4.376e-05 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:20:20 COMPOUND: DIMETHYL DISULFIDE Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 6 Drop length to conduit (cm) 61 7 Open surface=1 1 8 Subsurface entrance=1 0 9 subsurface exit =1 0 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 16 velocity air at drain opening (ft/min) 84 17 municipal waste in conduit =1 0 18 Assume equilibrium in unit, =1 Ω 19 pH (enter 0 for no pH adjustment) 8.9 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 1.4811E-06 Gas concentration in 0 mol fraction. Gas flow 1170 L/s 159 Weight fraction out at base of drop is 1.3430203399053E-06 fraction transferred in the drain drop from hub is .093228 Ο. fraction loss in wastel drop to hub fraction loss in waste2 drop to hub 0. fraction loss in waste3 drop to hub 0. fraction loss in collection hub drop 0.093228 fraction loss in unit 0 fraction loss in line run 0. component upstream of unit, g/s 0. mol fract. headspace upstream (y) 0. headspace at conduit discharge, y 0. headspace end of conduit (y) 1.659e-18 mol fract. headspace vent base 3.811e-05 headspace flow out vent (cc/s) -1.17e+06 headspace flow down line (cc/s) 1.17e+06 KG surface (m/s) 2007.233 KL surface (m/s) 6.787e-09 flow of waste down hub (l/s) 0. component flow in waste into unit (g/s) 1.73289 total component into unit, g/s 1.57133 179 TOTAL AIR EMISSIONS (g/s) 0.16155 (Mg/year) 5.09474 EMISSION FACTOR (q/cm2-s) 6.582e-10 UNIT EXIT CONCENTRATION (ppmw) 1.34302 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:20:20

COMPOUND: DIMETHYL DISULFIDE

Type of unit is aerated biotreatment 17 ASB Zone 3 1 Description of unit 2 Wastewater temperature (C) 30.01 3 length of aeration unit (m) 376 4 width of aeration unit (m) 188 5 depth of aeration unit (m) 0.91 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 6 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 0.3 16 active biomass, aeration (g/l) Ω 17 If covered, then enter 1 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.42 Properties of DIMETHYL DISULFIDE at 30. deq.C (86. deq.F) vp= 37.814 mmHg (0.7314 psia) hl= 0.00141 atm-m3/mol 78.352 y/x 0.056726 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C dl= 1.027e-05 cm2/s dv= 0.085991 cm2/s 214 k1=0. L/g-hrCompound flow rate from inlet water is 0.00102 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.272 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 329.675. kl is estimated as 5.918e-06 m/s. kg is estimated as 0.005575 m/s. Model: 2 kg is estimated as 0.005575 m/s. Model: 2 The Schmidt number is 1.74436. The friction velocity is 37.398 m/s kg is estimated as 0.012742 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.1143 m/s. kl (agitated) is estimated as 0.015772 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 5.972e-05 m/s. The effective stripping time (surface + diffused air) is 253.944 minutes. (4.2324 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 916.326 min. (15.272 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.11644 KL aerated (m/s) 0.015772 KL OVERALL AERATED (m/s) 0.004711 KG quiescent (m/s) 0.005679

5.918e-06 KL quiescent (m/s) KL OVERALL QUIESCENT (m/s) 5.813e-06 5.972e-05 KL OVERALL (m/s) air stripping time constant (min) FRACTION SURFACE VOLATILIZED 253.944 0.18107 FRACTION SUBMERGED VOLATILIZED TOTAL FRACTION VOLATILIZED FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED 0. 0.18107 0.76875 258 0. TOTAL AIR EMISSIONS (g/s) 1.848e-04 0.005827 (Mg/year) EMISSION FACTOR (g/cm2-s) UNIT EXIT CONCENTRATION (ppmw) DETAILED CALCULATIONS at Unit 18 ASB Zone 2 Type: aerated biotreatment 2.614e-13 4.376e-05 264 Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:20:20 COMPOUND: DIMETHYL DISULFIDE Type of unit is aerated biotreatment 18 1 Description of unit ASB Zone 2 2 Wastewater temperature (C) 32.08 3 length of aeration unit (m) 368 4 width of aeration unit (m) 5 depth of aeration unit (m) 6 Area of agitation (each aerator,m2) 184 0.97 275 135 6 Area of agitation (each aerator,m2)
7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Aeration air flow (m3/s)
16 active biomass, aeration (g/l) 15 75 49.53 1200 0.83 0.83 0 19 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.24 Properties of DIMETHYL DISULFIDE at 32.1 deg.C (89.7 deg.F) hl= 0.001558 atm-m3/mol vp= 41.785 mmHg (0.80821 psia) 86.579 y/x 0.062258 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C kl= 0. L/q-hr dl= 1.034e-05 cm2/s dv= 0.087022 cm2/s Compound flow rate from inlet water is 0.027971 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. ____Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 5.945e-06 m/s. kg is estimated as 0.005633 m/s. Model: 2 kg is estimated as 0.005633 m/s. Model: 2 The Schmidt number is 1.72371. The friction velocity is 37.398 m/s kg is estimated as 0.012836 m/s. Model: 3

314	Agitated surface	
315	The rotation speed is 125.654 radians per s	second.
316	The rotation factor NRW is 2.052e+06.	
317	The power number NPR is 7.881e-04.	
318	The rotation factor NFR is 797.027.	
319	kg (agitated)is estimated as 0.11498 m/s.	
320	kl (agitated) is estimated as 0.016622 m/s.	
321	The specified and growth biomass is 0.3	βg/L.
322	The effective KL (surface + diffused air)	is 1.598e-04 m/s.
323	The effective stripping time (surface + di	ffused air) is 101.198 minutes.
	(1.68663 hrs.)	
324	The pump mixing time is 5 x the pumping re	circulaion time, O. min.
325	The ratio of the mixing to the striping (s	surface + diffused air) is 0.
326	The mean residence time is 935.622 min. (1	5.594 hr.)
327	The ratio of the pump mixing to the reside	ence time is 0.
328	KG aerated (m/s)	0.11714
329	KL aerated (m/s)	0.016622
330	KL OVERALL AERATED (m/s)	0.005152
331	KG quiescent (m/s)	0.005738
332	KL quiescent (m/s)	5.945e-06
333	KL OVERALL QUIESCENT (m/s)	5.85e-06
334	KL OVERALL (m/s)	1.598e-04
335	air stripping time constant (min)	101.198
336	FRACTION SURFACE VOLATILIZED	0.33728
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.33728
339	FRACTION BIOLOGICALLY REMOVED	0.62623
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	0.009434
342	(Mg/year)	0.29751
343	EMISSION FACTOR (g/cm2-s)	1.393e-11
344	UNIT EXIT CONCENTRATION (ppmw)	8.721e-04
345		

1 Focal water added at the unit (1, 2 Area of openings at unit (cm2) 3 Radius of drop pipe (cm) 4 Drop length to conduit (cm) 5 Humidity of inlet air (%) 6 Temperature of air (C) 7 Drain air velocity (ft/min) 8 manhole air velocity (ft/min) 10 % ind speed (cm/s at 10 m) 11 distance to next unit (cm) 12 slope of underflow conduit 13 friction factor liquid 14 friction factor gas 15 radius of underflow Type of unit is 1 Total water added at the unit (1/s) 50 0 2 Area of openings at unit (cm2) 50 5 61 40 25 84 128 66 447 500 .015 .016 .006 15 radius of underflow conduit (cm) 12 25 16 Underflow T (C) 17 oscillation cycle time (min) 18 design collection velocities (ft/s) 19 design branch line fraction full 5 2 .4 Type of unit is 8 HL partition flag=1, adjust for sorption 9 unit recycle convergence number 0 8 HL partition flag=1, adjust for sorption
9 unit recycle convergence number
10 oil molecular weight
11 oil density (g/cc)
12 NaUT 1=municipal 2=industrial 3=turb.
13 NaUT 1=mass tr. 2=equil
14 parts biomass per 1000 parts COD
15 oil water partition method 0=owpc
16 use UNIFAC aqueous data base =1
17 specify mass transfer for unit, =1
18 Use biomass for unit option, =1
19 biogrowth Monod half concentration ppm 200 0 0 0 0 DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:06 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is aerated biotreatment 1Description of unit112Wastewater temperature (C)113length of aeration unit (m)114width of aeration unit (m)115depth of aeration unit (m)6Area of agitation (each aerator,m2)7Total number of agitators in the unit8Power of agitation (each aerator,HP)9Impeller diameter (cm)10Impeller rotation (RPM)11Agitator mechanical efficiency12aerator effectiveness, alpha13if there is plug flow, enter 114Overall biorate (mg/g bio-hr)15Aeration air flow (m3/s)16active biomass, aeration (g/l)17If covered, then enter 1 11 1 Description of unit ASB Zone 1 34.08 295 295 1.4 135 31 75 49.53 1200 1200 0.83 0.83 0 19 0 0.3 17 If covered, then enter 1 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04

24

Properties of DIMETHYL SULFIDE (DMS) at 34.1 deg.C (93.3 deg.F) hl= 0.002924 atm-m3/mol vp= 704.653 mmHg (13.629 psia) 162.463 v/x 0.11606 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1= 0. L/g-hr dl= 1.504e-05 cm2/s dv= 0.14765 cm2/s Compound flow rate from inlet water is 0.27039 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 28.926 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 237.766. kl is estimated as 7.634e-06 m/s. kg is estimated as 0.007917 m/s. Model: 2 kg is estimated as 0.007917 m/s. Model: 2 The Schmidt number is 1.01591. The friction velocity is 37.398 m/s kg is estimated as 0.017873 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.14978 m/s. 94 kl (agitated) is estimated as 0.021024 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 4.77e-04 m/s. The effective stripping time (surface + diffused air) is 48.915 minutes. (0.81526 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 1735.541 min. (28,926 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.15258 KL aerated (m/s) 0.021024 104KL OVERALL AERATED (m/s) 0.009769 KG quiescent (m/s) 0.008066 KL quiescent (m/s) 7.634e-06 KL OVERALL QUIESCENT (m/s) 7.574e-06 KL OVERALL (m/s) 4.77e-04 air stripping time constant (min) 48.915 FRACTION SURFACE VOLATILIZED 0.80064 FRACTION SUBMERGED VOLATILIZED Ο. TOTAL FRACTION VOLATILIZED 0.80064 0.1768 FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED 0. TOTAL AIR EMISSIONS (g/s) 0.21648 6.82699 (Mg/year) EMISSION FACTOR (g/cm2-s) 2.488e-10 UNIT EXIT CONCENTRATION (ppmw) 0.005215 DETAILED CALCULATIONS at Unit 12 def.system exit st Type: system exit stream Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:06 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is system exit stream 12 1 Description of unit def.system exit st

TOTAL AIR EMISSIONS (q/s) 0. (Mg/year) 0. EMISSION FACTOR (g/cm2-s) 2.488e-10 UNIT EXIT CONCENTRATION (ppmw) 2.285e-05 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:06 COMPOUND: DIMETHYL SULFIDE (DMS) Type of unit is open hub drain 1 Description of unit 13 default open hub d 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s) \cap 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 61 6 Drop length to conduit (cm) 7 Open surface=1 1 8 Subsurface entrance=1 0 9 subsurface exit =1 0 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 0.015 12 Slope of underflow conduit 16 velocity air at drain opening (ft/min) 17 municipal waste in conduit =1 18 Assume equilibrium in unit, =1 19 pH (enter 0 for no pH adjustment) 84 Ω 0 19 pH (enter 0 for no pH adjustment) 8.9 154 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 2.677E-07 Gas concentration in 0 mol fraction. Gas flow 1170 L/s Weight fraction out at base of drop is 2.31101058606837E-07 fraction transferred in the drain drop from hub is .136716 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub 0. Ο. fraction loss in waste3 drop to hub fraction loss in collection hub drop 0.13672 fraction loss in unit Ο. fraction loss in line run 0. component upstream of unit, g/s 0. mol fract. headspace upstream (y) headspace at conduit discharge, y headspace end of conduit (y) mol fract. headspace vent base 0. 0. 5 5.603e-19 1.532e-05 headspace flow out vent (cc/s) headspace flow down line (cc/s) KG surface (m/s) -1.17e+06 1.17e+06 2834.248 KL surface (m/s) 8.784e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.31321 total component into unit, g/s0.27039TOTAL AIR EMISSIONS (g/s)0.04282 0.042821 1.3504 (Mg/year) EMISSION FACTOR (g/cm2-s) 2.488e-10 UNIT EXIT CONCENTRATION (ppmw) 0.2311 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:06

COMPOUND: DIMETHYL SULFIDE (DMS)

Type of unit is aerated biotreatment 17 ASB Zone 3 1 Description of unit 2 Wastewater temperature (C) 30.01 3 length of aeration unit (m) 376 4 width of aeration unit (m) 188 5 depth of aeration unit (m) 0.91 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 6 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 Ω 0 18 special input 7.42 19 pH (enter 0 for no pH adjustment) Properties of DIMETHYL SULFIDE (DMS) at 30. deg.C (86. deg.F) hl= 0.002519 atm-m3/mol vp= 606.985 mmHg (11.74 psia) 139.945 y/x 0.10132 g/L gas per g/L liquid Temperature adjustment factor = 1.046 ^(T-25), deg. C 214 k1 = 0. L/q-hrdl= 1.485e-05 cm2/s dv= 0.14425 cm2/s Compound flow rate from inlet water is 2.889e-04 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.272 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . 224 The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 329.675. kl is estimated as 7.566e-06 m/s. kg is estimated as 0.007884 m/s. Model: 2 kg is estimated as 0.007884 m/s. Model: 2 The Schmidt number is 1.03989. The friction velocity is 37.398 m/s kg is estimated as 0.017611 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.14804 m/s. kl (agitated) is estimated as 0.018962 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 1.053e-04 m/s. The effective stripping time (surface + diffused air) is 144.073 minutes. (2.40122 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 916.326 min. (15.272 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.15081 KL aerated (m/s) 0.018962 KL OVERALL AERATED (m/s) 0.00854 KG quiescent (m/s) 0.008032

KL quiescent (m/s) 7.566e-06 KL OVERALL QUIESCENT (m/s) 7.497e-06 KL OVERALL (m/s) 1.053e-04 air stripping time constant (min) FRACTION SURFACE VOLATILIZED FRACTION SUBMERGED VOLATILIZED TOTAL FRACTION VOLATILIZED FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED TOTAL AIR EMISSIONS (g/s) 144.073 0.5886 Ο. 0.5886 0.31886 Ο. TOTAL AIR EMISSIONS (g/s) 1.701e-04 0.005363 (Mg/year) EMISSION FACTOR (g/cm2-s)2.406e-13UNIT EXIT CONCENTRATION (ppmw)2.285e-05DETAILED CALCULATIONS at Unit 18 ASB Zone 2Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:06 COMPOUND: DIMETHYL SULFIDE (DMS) 269Type of unit is aerated biotreatment2701 Description of unit2712 Wastewater temperature (C)2723 length of aeration unit (m)2734 width of aeration unit (m)2745 depth of aeration unit (m)2756 Area of agitation (each aerator,m2)2767 Total number of agitators in the unit2778 Power of agitation (each aerator,HP)2789 Impeller diameter (cm)27910 Impeller rotation (RPM)28011 Agitator mechanical efficiency28112 aerator effectiveness, alpha28314 Overall biorate (mg/g bio-hr)28415 Aeration air flow (m3/s)28516 active biomass, aeration (g/l)28617 If covered, then enter 128718 special input28819 pH (enter 0 for no pH adjustment) Type of unit is aerated biotreatment 18 ASB Zone 2 32.08 368 184 0.97 135 15 75 49.53 1200 0.83 0.83 0 19 0 0.3 0 0 7.24 289 290 Properties of DIMETHYL SULFIDE (DMS) at 32.1 deg.C (89.7 deg.F) 291 292 hl= 0.002719 atm-m3/mol vp= 655.201 mmHg (12.673 psia) 151.062 y/x 0.10863 g/L gas per g/L liquid Temperature adjustment factor = 1.046 ^(T-25), deg. C k1= 0. L/g-hr dl= 1.495e-05 cm2/s dv= 0.14597 cm2/skl= 0. L/g-hr dl= 1.495e-05 cm2/s dv= 0
Compound flow rate from inlet water is 0.006101 g/s.
Compound flow rate from inlet vent is 0. g/s.
Compound flow rate from inlet duct is 0. g/s.
Submerged aeration rate from inlet vent is 0. m3/s.
Total submerged aeration is 0. m3/s. 298 Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. ____Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.6e-06 m/s. kg is estimated as 0.007966 m/s. Model: 2 kg is estimated as 0.007966 m/s. Model: 2 The Schmidt number is 1.02758. The friction velocity is 37.398 m/s kg is estimated as 0.017744 m/s. Model: 3

314	Agitated surface	
315	The rotation speed is 125.654 radians pe	er second.
316	The rotation factor NRW is 2.052e+06.	
317	The power number NPR is 7.881e-04.	
318	The rotation factor NFR is 797.027.	
319	kg (agitated)is estimated as 0.14892 m/s	3.
320	kl (agitated)is estimated as 0.019984 m/	′s.
321	The specified and growth biomass is	0.3 g/L.
322	The effective KL (surface + diffused ai	r) is 2.809e-04 m/s.
323	The effective stripping time (surface +	- diffused air) is 57.552 minutes. (0.9592
	hrs.)	
324	The pump mixing time is 5 x the pumping	y recirculaion time, O. min.
325	The ratio of the mixing to the striping	y (surface + diffused air) is 0.
326	The mean residence time is 935.622 min.	(15.594 hr.)
327	The ratio of the pump mixing to the res	sidence time is 0.
328	KG aerated (m/s)	0.15171
329	KL aerated (m/s)	0.019984
330	KL OVERALL AERATED (m/s)	0.009148
331	KG quiescent (m/s)	0.008115
332	KL quiescent (m/s)	7.6e-06
333	KL OVERALL QUIESCENT (m/s)	7.537e-06
334	KL OVERALL (m/s)	2.809e-04
335	air stripping time constant (min)	57.552
336	FRACTION SURFACE VOLATILIZED	0.76981
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.76981
339	FRACTION BIOLOGICALLY REMOVED	0.18284
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	0.004697
342	(Mg/year)	0.14812
343	EMISSION FACTOR (g/cm2-s)	6.937e-12
344	UNIT EXIT CONCENTRATION (ppmw)	2.469e-04
245		

Type of unit is 1 Total water added at the unit (1/s) 50 0 2 Area of openings at unit (cm2) 50 3 Radius of drop pipe (cm) 5 4 Drop length to conduit (cm) 61 5 Humidity of inlet air (%) 40 6 Temperature of air (C) 25 7 Drain air velocity (tt/min, 8 manhole air velocity (ft/min) 9 Conduit air velocity (ft/min) 10 Wind speed (cm/s at 10 m) 11 distance to next unit (cm) 12 slope of underflow conduit 84 128 66 447 500 .015 13 friction factor liquid .016 .006 14 friction factor gas 15 radius of underflow conduit (cm) 12 25 16 Underflow T (C) 17 oscillation cycle time (min) 18 design collection velocities (ft/s) 19 design branch line fraction full 5 2 .4 Type of unit is Type of unit is 8 HL partition flag=1, adjust for sorption 9 unit recycle convergence number 10 oil molecular weight 11 oil density (g/cc) 12 NaUT 1=municipal 2=industrial 3=turb. 13 NaUT 1=mass tr. 2=equil 14 parts biomass per 1000 parts COD 15 oil water partition method 0=owpc 16 use UNIFAC aqueous data base =1 17 specify mass transfer for unit, =1 18 Use biomass for unit option, =1 19 biogrowth Monod half concentration ppm 0 26 27 29 30 33 33 33 33 35 200 0 0 0 0 19 biogrowth Monod half concentration ppm DETAILED CALCULATIONS at Unit 11 ASB Zone 1 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:41 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 11
2 Wastewater temperature (C)
3 length of aeration unit (m)
4 width of aeration unit (m)
5 depth of aeration unit (m)
6 Area of agitation (each aerator,m2)
7 Total number of agitators in the unit
8 Power of agitation (each aerator,HP)
9 Impeller diameter (cm)
10 Impeller rotation (RPM)
11 Agitator mechanical efficiency
12 aerator effectiveness, alpha
13 if there is plug flow, enter 1
14 Overall biorate (mg/g bio-hr)
15 Aeration air flow (m3/s) 11 1 Description of unit ASB Zone 1 34.08 295 295 1.4 135 31 75 49.53 1200 1200 0.83 0.83 0 19 55678 555 15 Aeration air flow (m3/s) 16 active biomass, aeration (g/l) 17 If covered, then enter 1 0 0.3 0 18 special input 0 19 pH (enter 0 for no pH adjustment) 7.04

```
Properties of METHANETHIOL(methyl mercaptan) at 34.1 deg.C (93.3 deg.F)
              hl= 0.004158 atm-m3/mol vp= 2272.142 mmHg (43.948 psia)
                   230.99 y/x
                   0.16502 g/L gas per g/L liquid
              Temperature adjustment factor = 1.046 \wedge (T-25), deg. C
              k1=0. L/g-hr
                                    dl= 1.525e-05 cm2/s dv= 0.23702 cm2/s
           Compound flow rate from inlet water is 0.009471 g/s.
           Compound flow rate from inlet vent is 0. g/s.
           Compound flow rate from inlet duct is 0. q/s.
           Submerged aeration rate from inlet vent is 0. m3/s.
           Total submerged aeration is 0. m3/s.
           The residence time in the unit is 28.926 hr.
               Biomass production
               The biomass production rate is 0.mg/hr. (0. mg/L)
               The fraction dissolved solids converted is 0. .
               The estimated biomass exit concentration is 0. mg/L.
                   Quiescent wind shear surface
                                                 Springer
           The fetch to depth ratio is 237.766.
           kl is estimated as 7.703e-06 m/s.
           kg is estimated as 0.010871 m/s. Model: 2
           kg is estimated as 0.010871 m/s. Model: 2
           The Schmidt number is 0.63285.
           The friction velocity is 37.398 m/s
           kg is estimated as 0.024173 m/s. Model: 3
                   Agitated surface
           The rotation speed is 125.654 radians per second.
           The rotation factor NRW is 2.052e+06.
           The power number NPR is 7.881e-04.
           The rotation factor NFR is 797.027.
           kg (agitated) is estimated as 0.18977 m/s.
           kl (agitated) is estimated as 0.021167 m/s.
               The specified and growth biomass is 0.3 \text{ g/L}.
            The effective KL (surface + diffused air) is 6.265e-04 m/s.
            The effective stripping time (surface + diffused air) is 37.242 minutes. (0.62071
            hrs.)
            The pump mixing time is 5 x the pumping recirculaion time, 0. min.
            The ratio of the mixing to the striping (surface + diffused air) is 0.
            The mean residence time is 1735.541 min. (28.926 hr.)
            The ratio of the pump mixing to the residence time is 0.
              KG aerated (m/s)
102
                                                        0.19332
              KL aerated (m/s)
                                                        0.021167
              KL OVERALL AERATED (m/s)
                                                        0.012876
              KG quiescent (m/s)
                                                        0.011075
             KL quiescent (m/s)
                                                        7.703e-06
             KL OVERALL QUIESCENT (m/s)
                                                        7.672e-06
             KL OVERALL (m/s)
                                                        6.265e-04
             air stripping time constant (min)
                                                        37.242
              FRACTION SURFACE VOLATILIZED
                                                       0.88738
              FRACTION SUBMERGED VOLATILIZED
                                                        Ο.
              TOTAL FRACTION VOLATILIZED
                                                        0.88738
                                                        0.093578
              FRACTION BIOLOGICALLY REMOVED
              FRACTION ABSORBED
                                                        0.
              TOTAL AIR EMISSIONS (g/s)
                                                        0.008404
                                                        0.26504
                               (Mg/year)
              EMISSION FACTOR (g/cm2-s)
                                                        9.657e-12
              UNIT EXIT CONCENTRATION (ppmw)
                                                        1.541e-04
           DETAILED CALCULATIONS at Unit 12 def.system exit st
           Type: system exit stream
             Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker
             Poe Privileged and Confidential\New Stripper
             Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7
             3/16/2023 1:47:24 PM 19:21:41
           COMPOUND: METHANETHIOL(methyl mercaptan)
           Type of unit is system exit stream
           1 Description of unit
                                                       12
                                                             def.system exit st
```

TOTAL AIR EMISSIONS (q/s) 0. 0. (Mg/year) EMISSION FACTOR (g/cm2-s) 9.657e-12 UNIT EXIT CONCENTRATION (ppmw) 5.348e-07 DETAILED CALCULATIONS at Unit 13 default open hub d Type: open hub drain Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:41 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is open hub drain 13 default open hub d 1 Description of unit 2 Underflow T (C) 43.89 3 Total water added at the unit (1/s)0 4 Area of openings at unit (cm2) 50 5 Radius of drop pipe (cm) 5 61 6 Drop length to conduit (cm) 7 Open surface=1 1 0 8 Subsurface entrance=1 9 subsurface exit =1 0 10 radius of underflow conduit (cm) 12 11 distance to next unit (cm) 500 12 slope of underflow conduit 16 velocity air at drain opening (ft/min) 0.015 84 17 municipal waste in conduit =1 18 Assume equilibrium in unit, =1 19 pH (enter 0 for no pH adjustment) 0 0 8.9 Equilibrium partitioning in drain drop hub is assumed. Total drain flow is 1170 l/s. Weight fraction down is 9.8E-09 Gas concentration in 0 mol fraction. Gas flow 1170 L/s Weight fraction out at base of drop is 8.09478308097639E-09 fraction transferred in the drain drop from hub is .174002 fraction loss in wastel drop to hub 0. fraction loss in waste2 drop to hub Ο. fraction loss in waste3 drop to hub Ο. fraction loss in collection hub drop 0.174 fraction loss in unit 0. fraction loss in unit0.fraction loss in line run0.component upstream of unit, g/s0.mol fract. headspace upstream (y)0.headspace at conduit discharge, y0.headspace end of conduit (y)2.559e-20mol fract. headspace vent base9.217e-07headspace flow out vent (cc/s)-1.17e+06 headspace flow due vent (cc/s) headspace flow down line (cc/s) KG surface (m/s) KL surface (m/s) 1.17e+06 3886.338 8.868e-09 flow of waste down hub (l/s) Ο. component flow in waste into unit (g/s) 0.011466 total component into unit, g/s 0.009471 TOTAL AIR EMISSIONS (g/s) 0.001995 0.062918 (Mg/year) EMISSION FACTOR (g/cm2-s) 9.657e-12 UNIT EXIT CONCENTRATION (ppmw) 0.008095 DETAILED CALCULATIONS at Unit 17 ASB Zone 3 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:41

COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 17 ASB Zone 3 2 Wastewater temperature 30.01 (C) 3 length of aeration unit (m) 376 4 width of aeration unit (m) 188 5 depth of aeration unit (m) 0.91 6 Area of agitation (each aerator, m2) 135 7 Total number of agitators in the unit 6 8 Power of agitation (each aerator, HP) 75 9 Impeller diameter (cm) 49.53 10 Impeller rotation (RPM) 1200 11 Agitator mechanical efficiency 0.83 12 aerator effectiveness, alpha 0.83 13 if there is plug flow, enter 1 0 14 Overall biorate (mg/g bio-hr) 19 0 15 Aeration air flow (m3/s) 16 active biomass, aeration (q/1)0.3 17 If covered, then enter 1 0 18 special input 0 7.42 19 pH (enter 0 for no pH adjustment) Properties of METHANETHIOL(methyl mercaptan) at 30. deg.C (86. deg.F) hl= 0.003687 atm-m3/mol vp= 2014.774 mmHg (38.97 psia) 204.826 y/x 0.14829 g/L gas per g/L liquid Temperature adjustment factor = $1.046 \wedge (T-25)$, deg. C k1 = 0. L/g-hrdl= 1.505e-05 cm2/s dv= 0.23155 cm2/s Compound flow rate from inlet water is 7.237e-06 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.272 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 329.675. kl is estimated as 7.635e-06 m/s. kg is estimated as 0.010826 m/s. Model: 2 kg is estimated as 0.010826 m/s. Model: 2 The Schmidt number is 0.64779. The friction velocity is 37.398 m/s kg is estimated as 0.023814 m/s. Model: 3 Agitated surface The rotation speed is 125.654 radians per second. The rotation factor NRW is 2.052e+06. The power number NPR is 7.881e-04. The rotation factor NFR is 797.027. kg (agitated) is estimated as 0.18756 m/s. kl (agitated) is estimated as 0.019092 m/s. The specified and growth biomass is 0.3 g/L. The effective KL (surface + diffused air) is 1.391e-04 m/s. The effective stripping time (surface + diffused air) is 109.038 minutes. (1.81731 hrs.) The pump mixing time is 5 x the pumping recirculaion time, 0. min. 244 The ratio of the mixing to the striping (surface + diffused air) is 0. The mean residence time is 916.326 min. (15.272 hr.) The ratio of the pump mixing to the residence time is 0. KG aerated (m/s) 0.19108 KL aerated (m/s) 0.019092 KL OVERALL AERATED (m/s) 0.011483 KG quiescent (m/s) 0.011029

KL quiescent (m/s) 7.635e-06 KL OVERALL QUIESCENT (m/s) 7.6e-06 KL OVERALL (m/s) 1.391e-04 air stripping time constant (min) 109.038 FRACTION SURFACE VOLATILIZED 0.72669 FRACTION SUBMERGED VOLATILIZED TOTAL FRACTION VOLATILIZED FRACTION BIOLOGICALLY REMOVED FRACTION ABSORBED 0. 0.72669 0.18684 0. TOTAL AIR EMISSIONS (g/s) 5.259e-06 (Mg/year) 1.658e-04 EMISSION FACTOR (g/cm2-s) 7.439e-15 UNIT EXIT CONCENTRATION (ppmw) UNIT EXIT CONCENTRATION (ppmw) DETAILED CALCULATIONS at Unit 18 ASB Zone 2 5.348e-07 Type: aerated biotreatment Project C:\BoxDrive\Box\ALL4 Client Files\New-Indy Catawba\CONFIDENTIAL\Parker Poe Privileged and Confidential\New Stripper Permitting\Emissions\WWTP\PAE\Hardpipe Scenario\ASB Hardpipe Scenario V7 3/16/2023 1:47:24 PM 19:21:41 COMPOUND: METHANETHIOL(methyl mercaptan) Type of unit is aerated biotreatment 1 Description of unit 18 ASB Zone 2 2 Wastewater temperature (C) 32.08 3 length of aeration unit (m) 368 4 width of aeration unit (m) 184 4 width of aeration unit (m) 5 depth of aeration unit (m) 6 Area of agitation (each aerator,m2) 7 Total number of agitators in the unit 8 Power of agitation (each aerator,HP) 9 Impeller diameter (cm) 10 Impeller rotation (RPM) 11 Agitator mechanical efficiency 12 aerator effectiveness, alpha 13 if there is plug flow, enter 1 14 Overall biorate (mg/g bio-hr) 15 Aeration air flow (m3/s) 274 0.97 135 15 75 49.53 1200 0.83 0.83 0 19 15 Aeration air flow (m3/s) 0 16 active biomass, aeration (g/l) 0.3 17 If covered, then enter 1 Ω 18 special input Ο 19 pH (enter 0 for no pH adjustment) 7.24 Properties of METHANETHIOL(methyl mercaptan) at 32.1 deg.C (89.7 deg.F) hl= 0.003921 atm-m3/mol vp= 2142.771 mmHg (41.446 psia) 217.838 y/x 0.15664 g/L gas per g/L liquid Temperature adjustment factor = 1.046 ^(T-25), deg. C kl= 0. L/g-hr dl= 1.515e-05 cm2/s dv= 0.23433 cm2/s Compound flow rate from inlet water is 1.803e-04 g/s. Compound flow rate from inlet vent is 0. g/s. Compound flow rate from inlet duct is 0. g/s. Submerged aeration rate from inlet vent is 0. m3/s. Total submerged aeration is 0. m3/s. The residence time in the unit is 15.594 hr. Biomass production The biomass production rate is 0.mg/hr. (0. mg/L) The fraction dissolved solids converted is 0. . The estimated biomass exit concentration is 0. mg/L. Quiescent wind shear surface Springer The fetch to depth ratio is 302.703. kl is estimated as 7.67e-06 m/s. kg is estimated as 0.010938 m/s. Model: 2 kg is estimated as 0.010938 m/s. Model: 2 The Schmidt number is 0.64013. The friction velocity is 37.398 m/s kg is estimated as 0.023996 m/s. Model: 3 B-112

314	Agitated surface	
315	The rotation speed is 125.654 radians p	er second.
316	The rotation factor NRW is 2.052e+06.	
317	The power number NPR is 7.881e-04.	
318	The rotation factor NFR is 797.027.	
319	kg (agitated)is estimated as 0.18868 m/	s.
320	kl (agitated)is estimated as 0.020121 m	/s.
321	The specified and growth biomass is	0.3 g/L.
322	The effective KL (surface + diffused as	ir) is 3.715e-04 m/s.
323	The effective stripping time (surface	+ diffused air) is 43.518 minutes. (0.72529
	hrs.)	
324	The pump mixing time is 5 x the pumping	g recirculaion time, O. min.
325	The ratio of the mixing to the striping	g (surface + diffused air) is 0.
326	The mean residence time is 935.622 min	. (15.594 hr.)
327	The ratio of the pump mixing to the rea	sidence time is 0.
328	KG aerated (m/s)	0.19222
329	KL aerated (m/s)	0.020121
330	KL OVERALL AERATED (m/s)	0.012174
331	KG quiescent (m/s)	0.011143
332	KL quiescent (m/s)	7.67e-06
333	KL OVERALL QUIESCENT (m/s)	7.637e-06
334	KL OVERALL (m/s)	3.715e-04
335	air stripping time constant (min)	43.518
336	FRACTION SURFACE VOLATILIZED	0.86271
337	FRACTION SUBMERGED VOLATILIZED	0.
338	TOTAL FRACTION VOLATILIZED	0.86271
339	FRACTION BIOLOGICALLY REMOVED	0.097161
340	FRACTION ABSORBED	0.
341	TOTAL AIR EMISSIONS (g/s)	1.556e-04
342	(Mg/year)	0.004907
343	EMISSION FACTOR (g/cm2-s)	2.298e-13
344	UNIT EXIT CONCENTRATION (ppmw)	6.185e-06
345		

PAE H2S Factor Summary of H2SSIM Inputs and Outputs

•••••••••••••••••••••									Zone 1 Zone 2	7000 3	Total ASB
PAE - No Stripper Scenaric DO Temp pH Length	2 Zone 1 1.57 93.34 7.04 968	Zone 2 7 4.63 4 89.74 4 7.24 3 1208	Zone 3 4.66 86.02 7.42 1235	Flow Total Sulfide Sulfate	Main Inlet 25.48 0.252 390	Hardpipe 1.22 1.47 390	Units MGD mg/L mg/L	H2S g/s	0.08 0.03	0.02	0.122 g/s 2200 ODTP/day 1.06E-02 lb/ODTP
Width	968	3 604	617								
Aerato	rs 31	1 15	5 6							-	
PAE - Backup Stripper	Zone 1	Zone 2	Zone 3	_	Main Inlet	Hardpipe	Units	H2S g/s	0.08 0.03	20ne 3	0.126 g/s
DO	1.57	7 4.63	3 4.66	Flow	25.48	1.22	MGD				2200 ODTP/day
Temp	93.34	4 89.74	86.02	Total Sulfide	0.252	2.93	mg/L				1.09E-02 Ib/ODTP
pH	7.04	4 7.24	7.42	Sulfate	390	390	mg/L				
Length	968	3 1208	3 1235								
Width	968	3 604	617								
Aerato	rs 31	1 15	56								
									Zone 1 Zone 2	Zone 3	Total ASB
PAE - New Stripper	Zone 1	Zone 2	Zone 3		Main Inlet	Hardpipe	Units	H2S g/s	0.07 0.03	0.02	0.119
DO	1.57	7 4.63	4.66	Flow	25.48	0.00	MGD				2200 ODTP/day
Temp	93.34	4 89.74	86.02	Total Sulfide	0.252	0.00	mg/L				1.03E-02 Ib/ODTP
pH	7.04	4 7.24	7.42	Sulfate	390	390	mg/L				
Length	968	3 1208	3 1235				-				
Width	968	3 604	617								
Aerato	rs 31	1 1!	5 6								

*DO are based on average of all DO readings from 2021 and 2022 Subpart S performance testing.

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

New Stripper Scenario

Data Type 1. Site Ide	entification			-	Data Type 5. Zone Phys	ical and Chemica	I Conditions			12.00	-	
Company N	lame	New	-Indy		Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Units		Model Controls
Facility Na	ime	Cataw	/ba SC		Dissolved Oxygen	1.57	4.63	4.66		mg/L		
Basin Nar	ne	A	SB		Temperature	93.34	89.74	86.02		F		Run H2SSIM
Data Type 2. Model Zone Informat		tion			pH	7.04	7.24	7.42		s.u.		
Number of Zones	3 •	100			Redox Condition	Aerobic 💌	Aerobic 🔻	Aerobic 💌	Aerobic 💌			View
Zone Location of Hardpipe	1 -				Length	968	1208	1235		feet	Run H2SSIM View Parameters Clear Input Sheet	
Type of Basin	ASB 🗸	1012			Width	968	604	617		feet	•	Clear Input
Data Type 3. Load C	haracteristics				Depth	4.5	3.2	3		feet	-	Sheet
Loading Characteristics	Main Influent	Hardpipe	Unit	s	Mixing	Moderat	Moderat	Moderat				
Flow	25.48	MI NAVA	MGD	•	Number of Aerators	31	15	6				
Total Sulfide	0.252		mg/L	•	Total Horsepower	2325	1125	450		HP		
Sulfate	390	390	mg/L	•	Impellor Size	1.625	1.625	1.625		feet	•	
Data Type 4. Atmos	pheric Conditi	ons			Impellor RPM	1200	1200	1200		RPM		
Windspeed	3.55	mph 👻	-		Diffused Air Flow	0	0	0		cms	•	
Ambient Temperature	79	F .	S.M		Weir Height	O	0	0		feet	•	

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.119	gms/s
Total Emissions (H ₂ S)	8271.8	lbs/yr
Total Emissions (H ₂ S)	4.1	tons/yr
Total Emissions (H ₂ S)	3.8	tonnes/yr
Emission Flux (H ₂ S)	16.6	gms/m ² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.07	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	4987.3	1762.5	1522.0		lbs/yr
Emission Flux (H_2S)	26.0	11.8	9.8		gms/m² yr
Liquid Conc. (Total Sulfide)	0.003	0.001	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	36.300	6.200	5.400		lbs/yr

New Stripper Scenario

Current Parameters								
kgen	0.25							
ThetaGen	1.06							
KDO	0.05							
KSO4	10							
kanox	0.006							
ThetaOx	1.05							
m	1							
n	0.2							
MLVSS	272.2							
O ₂ Transfer Coeff.	2							
alpha 1	0.83							
alpha 2	0.6							

Percent Inlet Sulfide Removed 57.7%

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

Backup Stripper Scenario

ata type 1. Site ide	inuncation	_		Data Type 5. Zone Phys	cal and Chemica	Conditions					and the second se
Company Name New-Indy				Zone Condition	Zone 1	Zone 2	Zone 3	Zone 4	Unft	s	Model Controls
Facility Name Catawba SC		/ba SC	Dissolved Oxygen	1.57	4.63	4.66		mg/L			
Basin Nan	ne	A	SB	Temperature	93.34	89.74	86.02		F 🔹		Run H2SSIM
ata Type 2. Model :	Zone Informa	tion	N - 57	рH	7.04	7.24	7.42		s.u.		
Number of Zones	3 💌			Redox Condition	Aerobic 💌	Aerobic 💌	Aerobic 💌	Aerobic 🔻			View
Zone Location of Hardpipe	1 •			Length	968	1208	1235	6.13	feet		Parameters
Type of Basin	ASB 🔸			Width	968	604	617	5-11-11	feet		Clear Input
Data Type 3. Load Characteristics		1. Sec. 1.	Depth	4.5	3.2	3		feet	•	Sheet	
Loading Characteristics	Main Influent	Hardpipe	Units	Mixing	Moderat -	Moderat	Moderat -		1		
Flow	25.48	1.22	MGD -	Number of Aerators	31	15	6				1.
Total Sulfide	0.252	2.93	mg/L 🔹	Total Horsepower	2325	1125	450		HP		
Sulfate	390	390	mg/L 🔹	Impellor Size	1.625	1.625	1.625		feet		
ata Type 4. Atmosp	pheric Conditi	ons	- 78 EB-	Impellor RPM	1200	1200	1200		RPM	1	
Windspeed	3.55	mph 👻		Diffused Air Flow	0	0	0	10 M	cms		
Ambient Temperature	79	F -		Weir Height	0	0	0	MAR -	feet	-	

B-117

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.126	gms/s
Total Emissions (H ₂ S)	8765.3	lbs/yr
Total Emissions (H ₂ S)	4.4	tons/yr
Total Emissions (H ₂ S)	4.0	tonnes/yr
Emission Flux (H_2S)	17.6	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.08	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	5479.5	1763.8	1521.9		lbs/yr
Emission Flux (H ₂ S)	28.6	11.8	9.8		gms/m² yr
Liquid Conc. (Total Sulfide)	0.004	0.001	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	45.000	6.500	5.700		lbs/yr

Backup Stripper					
Scenario	10 million				
Current Parameters					
kgen	0.25				
ThetaGen	1.06				
KDO	0.05				
KSO4	10				
kanox	0.006				
ThetaOx	1.05				
m	1				
n	0.2				
MLVSS	272.2				
O ₂ Transfer Coeff.	2				
alpha 1	0.83				
alpha 2	0.6				

Percent Inlet Sulfide Removed 71.2%

NCASI WASTEWATER HYDROGEN SULFIDE EMISSIONS SIMULATOR (H2SSIM) Version 1.3

Data Type 1. Site Identification Data Type 5. Zone Physical and Chemical Conditions Company Name Zone 3 Zone 4 Units **Model Controls** New-Indv **Zone** Condition Zone 1 Zone 2 **Facility Name Dissolved Oxygen** 1.57 4.63 4.66 mg/L Catawba SC **Basin Name** Temperature 93.34 89.74 86.02 F -ASB Run H2SSIM 7.42 pH 7.04 7.24 s.u. Data Type 2. Model Zone Information Number of Zones 3 . **Redox Condition** Aerobic -Aerobic -Aerobic 🔻 Aerobic -View Zone Location of **Parameters** 1 feet -968 1208 1235 . Length Hardpipe ASB feet Type of Basin -Width 968 604 617 -**Clear Input** Sheet Depth feet -**Data Type 3. Load Characteristics** 4.5 3.2 3 Loading Main Mixing Moderat -Moderal * Moderat -Units Characteristics Influent Hardpipe Flow 25.48 MGD . Number of Aerators 31 15 6 1.22 **Total Sulfide** 0.252 2325 1125 450 HP mg/L · **Total Horsepower** 1.47 feet -Sulfate 390 mg/L • Impellor Size 1.625 1.625 1.625 390 Impellor RPM 1200 1200 1200 RPM **Data Type 4. Atmospheric Conditions** mph cm\$ -Windspeed 3.55 **Diffused Air Flow** 0 0 0 Ambient feet -79 F . Weir Height 0 0 0

Temperature

No Stripper Scenario

H2SSIM Results

Basin Emissions		Units
Total Emissions (H ₂ S)	0.123	gms/s
Total Emissions (H ₂ S)	8518.1	lbs/yr
Total Emissions (H ₂ S)	4.3	tons/yr
Total Emissions (H ₂ S)	3.9	tonnes/yr
Emission Flux (H ₂ S)	17.1	gms/m² yr

Zone Emissions	Zone 1	Zone 2	Zone 3	Zone 4	Units
Zone Emissions (H ₂ S)	0.08	0.03	0.02		gms/s
Zone Emissions (H ₂ S)	5232.9	1763.2	1521.9		lbs/yr
Emission Flux (H ₂ S)	27.3	11.8	9.8	1.82.54	gms/m² yr
Liquid Conc. (Total Sulfide)	0.003	0.001	0.000		mg/L
Liquid Sulfide Load (lbs/yr)	41.500	6.500	5.700		lbs/yr

No Stripper Scenario

Current Parameters						
kgen	0.25					
ThetaGen	1.06					
KDO	0.05					
KSO4	10					
kanox	0.006					
ThetaOx	1.05					
m	1					
n	0.2					
MLVSS	272.2					
O ₂ Transfer Coeff.	2					
alpha 1	0.83					
alpha 2	0.6					

Percent Inlet Sulfide Removed 65.9%

Methanol PAE Emissions Factors

Methanol PAE Scenarios	Hardpipe ppm	Hardpipe Flow, MGD	Air Stripping g/s	Pulp Production	Methanol Emissions Factor Ib/ODTP
New Stripper	N/A	N/A	3.47	2200	0.30
Backup Stripper	2095	1.22	17.63	2200	1.53
No Stripper	3809	1.22	26.69	2200	2.31

Design MeOH: 1620

lb/hr lb/ODT

16

B-121

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED

Data Date:

PAE - New Stripper Scenario

Instructions:

Enter data in green shaded sections of this page of this spreadsheet only.

I. BIOTREATMENT UNIT DESCRIPT	TION				II. OVERALL PARAMS - individual flows	
-	Units	Zone 1	Zone 2	Zone 3	Flow MeO MGD mg/l	0
Number of 75 HP Aerators	#	31	15	6		
Number of 100 HP Aerators	#	0	0	0		
Total Horsepower	HP	2325	1125	450	Inlet Stream ** 25.48 60.0	AVG ASB Inlet, 2021 and 2022
Temperature	С	35.4	33.5	31.3	Condensate Stream 0.0 0	
Length	ft	968	1,208	1,235	Outlet 25.5 5.1	AVG ASB Effluent, 2021 and 2022
Width	ft	968	604	617	** except condensate flow	
Average Depth	ft	4.5	3.2	3	231	
Aerator Rotation	грт	1200	1200	1200		
Agitation Area per 75 HP aerator	ft2	1452	1452	1452		
Agitation Area per 100 HP aerator	ft2	2206	2206	2206		
Impellor Diameter	in	19.5	19.5	19.5	NA - individual flow/conc data not available	

II. OVERALL PARAMS - total	flows			III. HAP DAT	A					
	Flow	Flow	MeOH	Methanol			Average	Зопе Сопс	entration	Detect
	m3/sec	MGD	mg/L		Units	Inlet	Zone 1	Zone 2	Zone 3	Limit
Influent Concentration	-	25.5	60.0	Conc.	mg/L	60.0	7.4	5.4	3.2	0.5
				Temp.	F		95.7	92.3	88.3	
Effluent Concentration			5.10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
Wind Speed	mph		3.8							

IV. RESULTS	
fbio - Methanol	%
Fraction biodegraded	86.3
Fraction air emissions	5.2
Fraction remaining in unit effluent	8.5

Expected zone concentration reductions similar to 2022 data. No Hardpipe Stream

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED PARAMETERS FOR CALCULATING MASS TRANSFER COEFIICIENTS

Data Date:

PAE - New Stripper Scenario

	Equil. Ratio (Hc)								
	Diff in Water	Diff in Water Diff in Air Henry's Law or (Keq) MW ScG Antoi							
	cm2/s	cm2/s	atm-m3/mol	m3 liq to m3 gas	g/mol		b	с	
Methanol	1.64E-05	0.150	5.19E-06	2.12E-04	32.0	1.006	1474	229.13	
Acetaldehyde	1.41E-05	0.1 24	8.77E-05	3.58E-03	45.1	1.216	1600	291.8	
MEK	9.80E-06	0.081	1.30E-04	5.31E-03	72.1	1.867	1305	229.27	

General			
	Units	Value	Name
viscosity of air	g/cm-s	0.000181	va
viscosity of water	g/cm-s	0.002	vw
density of air	g/cm3	0.0012	da
density of water	g/cm3	1	dw
MW of air	g/mol	29	Mwa
MW of water	g/mol	18	MWw
Diff of O2 in H2O	cm2/s	2.40E-05	DO2w
grav const.	lb-ft/s2/lb	32.17	g
R	atm-m3/mol K	8.21E-05	R_
Aerator Motor Eff	fraction	0.85	AerEff
O2 Trans Correct		0.83	Beta
Wind Speed	m/s	1.69	U
Diff of Ether	m/s	8.50E-06	Dether
O2 Trans	lb O2/HP-h	3	J

TURBULENT **KL Params** Zone 1 Zone 2 126.3 126.3 w Re 2.07E+06 2.07E+06 2.07E+06 Ы 35063 35063 7.92E-04 7.92E-04 7.92E-04 Power Number, p 8.06E+02 8.06E+02 8.06E+02 Fr

	Total TurbArea (ft2)	45012	21780	8712	
	Total TurbArea (m2)	4181.6	2023.4	809.3	
	Frac. Agitated	0.048	0.030	0.011	
	(by surface aerators)				
	QUIESCENT				
	Depth	1.37	0.98	0.92	
	SurfArea (ft2)	937472	729750	762343	
	SurfArea (m2)	87208.33	67885.00	70916.98	
	F/D Ratio	243	301	328	
These Parameters are used	ScL - Methanol	NA	NA	NA	
when F/D < 14 AND U > 3.25	ScL - Acetaldehyde	NA	NA	NA	
m/s	ScL - MEK	NA	NA	NA	
	U* (Friction Velocity)	NA	NA	NA	

DIFFUSED			
Air flow, cfm	0	0	0
Air flow, m3/s	0.000	0.000	0.000

Zone 3

126.3

35063

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED Calculating Mass Transfer Coefficient KL for Various Zones

Data Date: PAE - New Stripper Scenario

	Surface Aeration												
		Turbulent Area			П	Quiescient Area							
					11		kL, m/s						
	Temp Adj	kG	kL	KL turb		kG			U10 > 3.25		kL	KL quisc	KL overall
	н	m/s	m/s	m/s		m/s	U10 < 3.25	F/D<14	14 <f d<51.2<="" th=""><th>F/D>51.2</th><th>m/s</th><th>m/s</th><th>m/s</th></f>	F/D>51.2	m/s	m/s	m/s
Zone1					11			A					
Methanol	8.77E-06	1.55E-01	2.27E-02	5.37E-05		3.82E-03	4.31E-06	NA	3.38E-06	1.16E-06	4.31E-06	1.01E-06	3.54E-06
Zone 2						1							
Methanol	7.99E-06	1.55E-01	2.17E-02	4.92E-05		3.88E-03	4.31E-06	NA	4.06E-06	1.16E-06	4.31E-06	9.57E-07	2.40E-06
Zone 3				I									
Methanol	7.16E-06	1.55E-01	2.06E-02	4.44E-05		3.87E-03	4.31E-06	NA	4.37E-06	1.16E-06	4.31E-06	8.82E-07	1.38E-06
FORM XIII. DATA FORM FOR THE ESTIMATION OF MULTIPLE ZONE BIODEGRADATION FROM UNIT CONCENTRATIONS

Data Date: PAE - New Stripper Scenario

NAME OF COMPOUN Number of VOLUME of Average DI	hanol 0372.98 0878333									
FLOW RATE of wastewater to the unit (m3/s) 4 1.116 FLOW RATE of condensate to the unit (m3/s) 5 0.000 Total wastewater flowrate - (including condensates) (m3/s) 5-A 1.116 ESTIMATE OF KL (m/s) 6 see table Concentration in the wastewater treated in the unit (mg/L) 7 60 Concentration in the condensates (mg/L) 8 0 Concentration in wastewater (total - inc. cond) in (mg/L) 8-A 60 Concentration in the effluent (mg/L) 9 5.0982378										
TOTAL INL TOTAL RE TOTAL AR	ET FLOW (m3/s) line 4 pl SIDENCE TIME (s) line 2 EA OF IMPOUNDMENT (10 11 12	1.116 224279 230157	2.60 days						
	Lines 13 through 15 Not Use	ed								
7-7-7	Concentration for some	Area of the	Estimate of KL							
Zone	Concentration for zone,		in the zone							
Number	7 29609521	2011e, A (1112) 97001 1501	2 542655 06		(y/s) 2 2705	0 209621				
	5 303164807	67703 7816	2 397195-06		0.8765	0.300021				
	3 166816433	70821 6825	1 37942E-06		0.0700	0.097693				
4 5 6	0.100010400	10021.0020			0.000	0.001000				
TOTALS -	sum for each zone.	15 225706.614		16	3.47					
Removal by	y air stripping (g/s). Line 1 effluent (g/s) Line 9 times	6. line 10.		17 18	3.47 5.69					
Total loadin	a (a/s). {(line 5*line 8)+(lir	ne 4*line 7)} or {line	5-A*line 8-A}	19	67.0					
Removal b	v biodegradation (g/s) Line	19 minus (line 17 -	+ line 18).	20	57.8					
Fraction bio	degraded: Divide line 20	by line 19.		21	0.863					
Fraction air	emissions: Divide line 17		22	0.052						
Fraction rea	maining in unit effluent. D	ivide line 18 by 19.		23	0.085					

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED

Data Date:

PAE - Old Stripper Scenario

instructions:

Enter data in green shaded sections of this page of this spreadsheet only.

I. BIOTREATMENT UNIT DESCRIPT	TION	II. OVERALL PARAMS -	Individual flov	/\$							
-	Units	Zone 1	Zone 2	Zone 3		Flow MGD	MeOH mg/L				
Number of 75 HP Aerators	#	31	15	6							
Number of 100 HP Aerators	#	0	0	0							
Total Horsepower	HP	2325	1125	450	Inlet Stream **	25.48	59.5				
Temperature	С	35.4	33.5	31.3	Condensate Stream	1.2	2,095				
Length	ft	968	1,208	1,235	Outlet	26.7	5.1				
Width	ft	968	604	617	** except conde	ensate flow					
Average Depth	ft	4.5	3.2	3	51564 (FUE-566 (EFF556 930.003						
Aerator Rotation	rpm	1200	1200	1200							
Agitation Area per 75 HP aerator	ft2	1452	1452	1452							
Agitation Area per 100 HP aerator	ft2	2206	2206	2206							
Impellor Diameter	in	19.5	19.5	19.5	NA - individual flow/conc	NA - individual flow/conc data not available					

II. OVERALL PARAMS - total flows	5			III. HAP DAT	A					
and being-real to the real schemes - keeping convers	Flow	Flow	MeOH	Methanol			Average	Zone Conc	entration	Detect
	m3/sec	MGD	mg/L		Units	Inlet	Zone 1	Zone 2	Zone 3	Limit
Influent Concentration		26.7	152.8	Conc.	mg/L	152.8	41.9	24.2	7.6	0.5
				Temp.	F		95.7	92.3	88.3	
Effluent Concentration			5.10	65						
Wind Speed	mph		3.8							

IV. RESULTS	
fbio - Methanol	i %
Fraction biodegraded	86.8
Fraction air emissions	9.9
Fraction remaining in unit effluent	3.3

27% 16% 5% Avg. 2021/2022 Zone Reductions

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED PARAMETERS FOR CALCULATING MASS TRANSFER COEFIICIENTS

Data Date:

PAE - Old Stripper Scenario

	Equil. Ratio (Hc)											
	Diff in Water	Diff in Air	Henry's Law	or (Keq)	MW	ScG	Antoine Eqtn					
	cm2/s	cm2/s	atm-m3/mol	m3 liq to m3 gas	g/mol		b	С				
Methanol	1.64E-05	0.150	5.19E-06	2.12E-04	32.0	1.006	1474	229.13				
Acetaldehyde	1.41E-05	0.124	8.77E-05	3.58E-03	45.1	1.216	1600	291.8				
MEK	9.80E-06	0.081	1.30E-04	5.31E-03	72.1	1.867	1305	229.27				

General			
	Units	Value	Name
viscosity of air	g/cm-s	0.000181	va
viscosity of water	g/cm-s	0.002	vw
density of air	g/cm3	0.0012	da
density of water	g/cm3	1	dw
MW of air	g/mol	29	Mwa
MW of water	g/mol	18	MWw
Diff of O2 in H2O	cm2/s	2.40E-05	DO2w
grav const.	lb-ft/s2/lb	32.17	9
R	atm-m3/mol K	8.21E-05	R_
Aerator Motor Eff	fraction	0.85	AerEff
O2 Trans Correct		0.83	Beta
Wind Speed	m/s	1.69	U
Diff of Ether	m/s	8.50E-06	Dether
O2 Trans	lb O2/HP-h	3	J

TURBULENT KL Params w

	W	126.3	126.3	126.3
	Re	2.07E+06	2.07E+06	2.07E+06
	PI	35063	35063	35063
	Power Number, p	7.92E-04	7.92E-04	7.92E-04
	Fr	8.06E+02	8.06E+02	8.06E+02
	Total TurbArea (ft2)	45012	21780	8712
	Total TurbArea (m2)	4181.6	2023.4	809.3
	Frac. Agitated	0.048	0.030	0.011
	(by surface aerators)			
	QUIESCENT			
	Depth	1.37	0.98	0.92
	SurfArea (ft2)	937472	729750	762343
	SurfArea (m2)	87208.33	67885.00	70916.98
	F/D Ratio	243	301	328
These Parameters are used	ScL - Methanol	NA	NA	NA
when F/D < 14 AND U > 3.25	ScL - Acetaldehyde	NA	NA	NA
m/s	ScL - MEK	NA	NA	NA
	U* (Friction Velocity)	NA	NA	NA

DIFFUSED			
Air flow, cfm	0	0	0
Air flow, m3/s	0.000	0.000	0.000

Zone 1

Zone 2

Zone 3

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED Calculating Mass Transfer Coefficient KL for Various Zones

Data Date: PAE - Old Stripper Scenario

	Surface Aeration													
		Tı	urbulent Area			1010			Quiescient Area					
						kL, m/s								
	Temp Adj	kG	kL	KL turb		kG			U10 > 3.25		kL	KL quisc	KL overall	
	Ĥ	m/s	m/s	m/s		m/s	U10 < 3.25	F/D<14	14 <f d<51.2<="" th=""><th>F/D>51.2</th><th>m/s</th><th>m/s</th><th>m/s</th></f>	F/D>51.2	m/s	m/s	m/s	
Zone1							-							
Methanol	8.77E-06	1.55E-01	2.27E-02	5.37E-05		3.82E-03	4.31E-06	NA	3.38E-06	1.16E-06	4.31E-06	1.01E-06	3.54E-06	
Zone 2														
Methanol	7.99E-06	1.55E-01	2.17E-02	4.92E-05		3.88E-03	4.31E-06	NA	4.06E-06	1.16E-06	4.31E-06	9.57E-07	2.40E-06	
Zone 3														
Methanol	7.16E-06	1.55E-01	2.06E-02	4.44E-05	3	3.87E-03	4.31E-06	NA	4.37E-06	1.16E-06	4.31E-06	8.82E-07	1.38E-06	

FORM XIII. DATA FORM FOR THE ESTIMATION OF MULTIPLE ZONE BIODEGRADATION FROM UNIT CONCENTRATIONS

Data Date: PAE - Old Stripper Scenario

NAME OF THE FACILITYCOMPOUND for site specific biorate determinationNumber of zones in the biological treatment unitVOLUME of full-scale system (cubic meters)Average DEPTH of the full-scale system (meters)Average DEPTH of the full-scale system (meters)FLOW RATE of wastewater to the unit (m3/s)FLOW RATE of condensate to the unit (m3/s)Total wastewater flowrate - (including condensates) (m3/s)ESTIMATE OF KL (m/s)Concentration in the wastewater treated in the unit (mg/L)Concentration in the condensates (mg/L)Concentration in the effluent (mg/L)Concentration in the effluent (mg/L)TOTAL INLET FLOW (m3/s) line 4 plus the number on line 5 (or 5-A)TOTAL AREA OF IMPOUNDMENT (m2) line 2 divided by line 3									
Lines 13 through 15 Not Use	d								
		Estimate of KL							
Zone Concentration for zone,	Area of the	in the zone	AIR STF	RIPPING					
Number Ci (mg/L)	zone, A (m2)	(m/s)	KL A Ci	(g/s)					
1 41.94854003	87091.1501	3.54365E-06		12.9462	0.308621				
2 24.242506	67793.7816	2.39719E-06		3.9398	0.162515				
3 7.579459633	70821.6825	1.37942E-06		0.740	0.097693				
4									
5									
6									
TOTALS - sum for each zone.	15 225706.614		16	17.63					
Removal by air stripping (g/s) Line 1	6		17	17.63					
Loading in effluent (g/s) Line 9 times	line 10		18	5.96					
Total loading (g/s), {(line 5*line 8)+(line	e 4*line 7)} or {line	5-A*line 8-A3	19	178.8					
Removal by biodegradation (g/s) Line	Removal by biodegradation (a/c) line 19 minus (line 17 + line 19)								
(g/d) ===	19 minus (line 17 -	+ line 18).	20	155.2					
Fraction biodegraded: Divide line 20	19 minus (line 17 · by line 19.	+ line 18).	20 21	155.2 0.868					
Fraction biodegraded: Divide line 20 Fraction air emissions: Divide line 17	19 minus (line 17 · by line 19. by line 19.	+ line 18).	20 21 22	155.2 0.868 0.099					

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED

Data Date:

PAE - No Stripper

Instructions:

Enter data in green shaded sections of this page of this spreadsheet only.

I. BIOTREATMENT UNIT DESCRIPT	ION		II. OVERALL PARAMS	- individual	flows		
0-	Units	Zone 1	Zone 2	Zone 3		Flow MGD	MeOH mg/L
Number of 75 HP Aerators	#	31	15	6			
Number of 100 HP Aerators	#	0	0	0			
Total Horsepower	HP	2325	1125	450	Inlet Stream **	25.48	59.5
Temperature	С	35.4	33.5	31.3	Condensate Stream	1.2	3,809
Length	ft	968	1,208	1,235	Outlet	26.7	5.1
Width	ft	968	604	617	** except con	densate flow	
Average Depth	ft	4.5	3.2	3			
Aerator Rotation	rpm	1200	1200	1200			
Agitation Area per 75 HP aerator	ft2	1452	1452	1452			
Agitation Area per 100 HP aerator	ft2	2206	2206	2206			
Impellor Diameter	in	19.5	19.5	19.5	NA - individual flow/cor	ic data not ava	ailable

II. OVERALL PARAMS - total flows			III. HAP DA	III. HAP DATA								
	Flow	Flow	MeOH	Methanol	Methanol			Average Zone Concentration				
	m3/sec	MGD	mg/L		Units	Inlet	Zone 1	Zone 2	Zone 3	-	Limit	
Influent Concentration		26.7	231.3	Conc.	mg/L	231.3	63.5	36.7	11.5		0.5	
				Temp.	F		95.7	92.3	88.3			
Effluent Concentration			5.09824									
Wind Speed	mph		3.8									

IV. RESULTS	
fbio - Methanol	%
Fraction biodegraded	()
Fraction air emissions	9.9
Fraction remaining in unit effluent	2.2

27% 16% 5% Avg. 2021/2022 Zone Reductions

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED PARAMETERS FOR CALCULATING MASS TRANSFER COEFIICIENTS

Data Date:

PAE - No Stripper

	Equil. Ratio (Hc)							
	Diff in Water	Diff in Air	Henry's Law	or (Keq)	MW	ScG	Antoir	ne Eqtn
	cm2/s	cm2/s	atm-m3/mol	m3 liq to m3 gas	g/mol		b	С
Methanol	1.64E-05	0.150	5.19E-06	2.12E-04	32.0	1.006	1474	229.13
Acetaldehyde	1.41E-05	0.124	8.77E-05	3.58E-03	45.1	1.216	1600	291.8
MEK	9.80E-06	0.081	1.30E-04	5.31E-03	72.1	1.867	1305	229.27

General			
	Units	Value	Name
viscosity of air	g/cm-s	0.000181	va
viscosity of water	g/cm-s	0.002	vw
density of air	g/cm3	0.0012	da
density of water	g/cm3	1	dw
MW of air	g/mol	29	Mwa
MW of water	g/mol	18	MWw
Diff of O2 in H2O	cm2/s	2.40E-05	DO2w
grav const.	lb-ft/s2/lb	32.17	g
R	atm-m3/mol K	8.21E-05	R_
Aerator Motor Eff	fraction	0.85	AerEff
O2 Trans Correct		0.83	Beta
Wind Speed	m/s	1.69	U
Diff of Ether	m/s	8.50E-06	Dether
O2 Trans	lb O2/HP-h	3	J

TURBULENT KL Params

		Zone 1	Zone 2	Zone 3
	W	126.3	126.3	126.3
	Re	2.07E+06	2.07E+06	2.07E+06
	PI	35063	35063	35063
	Power Number, p	7.92E-04	7.92E-04	7.92E-04
	Fr	8.06E+02	8.06E+02	8.06E+02
	Total TurbArea (ft2)	45012	21780	8712
	Total TurbArea (m2)	4181.6	2023.4	809.3
	Frac. Agitated	0.048	0.030	0.011
	(by surface aerators)			
	QUIESCENT			
	Depth	1.37	0.98	0.92
	SurfArea (ft2)	937472	729750	762343
	SurfArea (m2)	87208.33	67885.00	70916.98
	F/D Ratio	243	301	328
These Parameters are used	ScL - Methanol	NA	NA	NA
when F/D < 14 AND U > 3.25	ScL - Acetaldehyde	NA	NA	NA
m/s	ScL - MEK	NA	NA	NA
	U* (Friction Velocity)	NA	NA	NA

DIFFUSED			
Air flow, cfm	0	0	0
Air flow, m3/s	0.000	0.000	0.000

APPENDIX C FORMS - CALCULATING FRACTION BIODEGRADED Calculating Mass Transfer Coefficient KL for Various Zones

Data Date: PAE - No Stripper

	Surface Aeration											
		Te	urbulent Area		Quiescient Área						CALCULATION OF THE	
						kL, m/s						
	Temp Adj	kG	kL	KL turb	kG			U10 > 3.25		kL	KL quisc	KL overall
	н	m/s	m/s	m/s	m/s	U10 < 3.25	F/D<14	14 <f d<51.2<="" th=""><th>F/D>51.2</th><th>m/s</th><th>m/s</th><th>m/s</th></f>	F/D>51.2	m/s	m/s	m/s
Zone1		·										
Methanol	8.77E-06	1.55E-01	2.27E-02	5.37E-05	3.82E-03	4.31E-06	NA	3.38E-06	1.16E-06	4.31E-06	1.01E-06	3.54E-06
Zone 2												1
Methanol	7.99E-06	1.55E-01	2.17E-02	4.92E-05	3.88E-03	4.31E-06	NA	4.06E-06	1.16E-06	4.31E-06	9.57E-07	2.40E-06
Zone 3		2.2										1
Methanol	7.16E-06	1.55E-01	2.06E-02	4.44E-05	3.87E-03	4.31E-06	NA	4.37E-06	1.16E-06	4.31E-06	8.82E-07	1.38E-06

FORM XIII. DATA FORM FOR THE ESTIMATION OF MULTIPLE ZONE **BIODEGRADATION FROM UNIT CONCENTRATIONS**

Data Date: PAE - No Stripper

NAME OF THE FACILITYMethanolCOMPOUND for site specific biorate determinationMethanolNumber of zones in the biological treatment unit1VOLUME of full-scale system (cubic meters)2 250372.98Average DEPTH of the full-scale system (meters)3 1.0878333FLOW RATE of wastewater to the unit (m3/s)4 1.116FLOW RATE of condensate to the unit (m3/s)5 0.054Total wastewater flowrate - (including condensates) (m3/s)5-A 1.170ESTIMATE OF KL (m/s)6 see tableConcentration in the wastewater treated in the unit (mg/L)7 59.511413Concentration in the condensates (mg/L)8 3808.7177Concentration in the effluent (mg/L)8 -A 231.34146Concentration in the effluent (mg/L)9 5.0982378TOTAL INLET FLOW (m3/s) line 4 plus the number on line 5 (or 5-A)10 1.170TOTAL AREA OF IMPOUNDMENT (m2) line 2 divided by line 312 230157								
	Lines 13 through 15 Not Use	d	Estimate of KL					
Zone	Concentration for zone,	Area of the	in the zone	AIR STR	RIPPING			
Number	Ci (mg/L)	zone, A (m2)	(m/s)	KL A Ci	(g/s)			
1	63.5146271	87091.1501	3.54365E-06		19.6019	0.308621		
2	36.70577636	67793.7816	2.39719E-06		5.9652	0.162515		
3	11.47612174	70821.6825	1.37942E-06		1.121	0.097693		
4								
5								
6								
TOTALS -	sum for each zone.	15 225706.614		16	26.69			
Removal b	v air stripping (g/s). Line 1	6.		17	26.69			
Loading in	effluent (a/s). Line 9 times	18	5.96					
Total loading (g/s), {(line 5*line 8)+(line 4*line 7)} or {line 5-A*line 8-A}.					270.7			
Removal by biodegradation (g/s) Line 19 minus (line 17 + line 18).					238.0			
Fraction bio	odegraded: Divide line 20	by line 19.	,	21	0.879			
Fraction air	emissions: Divide line 17	by line 19.		22	0.099			
Fraction re	maining in unit effluent. Di	vide line 18 by 19.		23	0.022			

APPENDIX C -AIR DISPERSION MODELING DOCUMENTATION

Appendix C – Supporting Modeling Information

New-Indy Catawba LLC (New-Indy Catawba) is submitting our updated ambient air dispersion modeling analysis for the proposed modification to the current foul condensate treatment system at the Mill, in support of the New Condensate Stripper Construction Permit Application (Application). The modification will install a new foul condensate stripper (new steam stripper) and demote the existing steam stripper (existing steam stripper) strictly to backup operation during periods of downtime experienced by the new steam stripper. In support of the Application, New-Indy Catawba has conducted an ambient air dispersion modeling analysis of hydrogen sulfide (H₂S), methyl mercaptan (MMC), and total reduced sulfur (TRS) and is providing additional information regarding the analysis below. The modeling files will be submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) electronically.

Background

On May 7, 2021, SCDHEC issued an Order to Correct Undesirable Level of Contaminants (Order) to New-Indy Catawba. Paragraph 5 of the Order required New-Indy to conduct a facility-wide air dispersion modeling analysis for sulfur dioxide (SO₂), H_2S , and TRS. New-Indy submitted an analysis for these pollutants in August 2021. In response to comments from SCDHEC and the United States Environmental Protection Agency (U.S. EPA), an updated analysis was submitted in October 2021. SCDHEC made an additional request for the emissions of each TRS constituent for each emission point that had been previously modeled as part of the Order. SCHDEC used this information, which was provided to SCDHEC on June 30, 2022, to conduct a modeling analysis for MMC to address community concerns and to update H_2S and TRS modeling.

On September 26, 2022, SCDHEC concluded its modeling analysis. During the course of updating the modeling, SCDHEC identified a small number of anomalously high modeled concentrations at a few, isolated receptors. SCDHEC and U.S. EPA reviewed the source of the anomalously high concentrations and concluded they were a result of a bug in the AERMOD (American Meteorological Society/EPA Regulatory Model) code triggered by rare combinations of meteorological and topographic conditions. For the New-Indy Catawba modeling, SCDHEC concluded that only the 1-hour averaging period results from the DITCH2 modeled source were affected. SCDHEC implemented an alternate characterization methodology for the DITCH2 source by reorganizing the order of vertices of the source in the modeling, which eliminated the trigger for the model code bug. U.S. EPA Region 4 concurred that the alternate characterization was appropriate for the analysis.

As mandated by Item V of Appendix A of the November 16, 2022, Consent Decree Civil No. 0:21-cv-02053-SAL, United States of America v. New Indy Catawba, LLC (EPA Consent Decree), New-Indy Catawba must install, maintain, and operate a containment system to prevent any uncontrolled black liquor overflows or releases from reaching the Mill's Aeration Stabilization Basin (ASB). To meet this requirement, New-Indy Catawba submitted a construction permit application (Application) to add the Black Liquor Storage Tank Secondary Containment (Equipment ID 2490) system to the Mill.

On February 13, 2023, New-Indy Catawba received the following email from SCDHEC:

As was touched-upon in the recent pre-application meeting for the stripper project, we request that a modeling analysis be submitted to account for facility-wide increases of hydrogen sulfide, methyl mercaptan and total reduced sulfur (TRS - modeled as H2S) as a result of the addition of a secondary containment tank for black liquor storage at the facility.

The modeled emissions and stack parameters should reflect those used in the 9/26/2022 modeling conducted by DHEC as part of the Order to Correct Undesirable Level of Air

Contaminants (dated 5/7/2021). Both 24 hour and 1 hour averaging periods should be used, consistent with the previous modeling.

On February 15, 2023, SCDHEC provided the AERMOD files used in their September 26, 2022 modeling to ALL4 LLC (ALL4), who is conducting air dispersion modeling on behalf of New-Indy Catawba. As directed by SCDHEC, ALL4 used the SCDHEC-provided modeling, including the reorganized DITCH2 characterization only for the 1-hour analysis of H_2S , as the basis for modeling the addition of a secondary containment tank for black liquor storage.

Facility-wide modeling of H2S, MMC, and TRS was conducted using the emissions rates, source parameters, meteorology, and receptor network provided by SCDHEC, with the exception of the additional secondary containment tank (Source ID NEWSPLTK) and associated structure (Structure ID NEWSPLTK). New-Indy Catawba has not reviewed the emissions rates provided in any of the SCDHEC modeling files and makes no claims, promises, or guarantees about their accuracy, completeness, or adequacy. Results of the air dispersion modeling analysis, which demonstrate that ambient concentrations are below the relevant standards for H_2S , MMC, and TRS for each averaging period, were provided to SCDHEC on March 8, 2023.

Air Dispersion Modeling for the New Condensate Stripper

To comply with Part I of Appendix A of the EPA Consent Decree, New-Indy Catawba will install a new steam stripper to treat all foul condensate. During periods when the new steam stripper is offline, foul condensate will be routed to the existing steam stripper where TRS compounds will be stripped. Peroxide addition to the stripped foul condensate in the Hardpipe will take place prior to discharging the treated pulping condensates to the ASB.

Facility-wide modeling of H_2S , MMC, and TRS was conducted using the source parameters, meteorology, and receptor network provided by SCDHEC, with the exception of the additional secondary containment tank (Source ID NEWSPLTK) and associated structure (Structure ID NEWSPLTK) that were included in the March 8, 2023 modeling submitted to SCDHEC. New-Indy Catawba used the maximum actual emissions rates as submitted in the October 2021 analysis (for H_2S and TRS) and corresponding MMC emissions rates, with the exception of the additional secondary containment tank and the ASB. Emissions rates from the March 8, 2023 analysis were used for the secondary containment tank and refined emissions reflecting the new steam stripper operation and foul condensate flow for the ASB. Results of the air dispersion modeling analysis demonstrate that ambient concentrations are below the relevant standards for H_2S , MMC, and TRS for each averaging period.

2023 New Steam Stripper Application

Pollutant	Standard ^(a)	Averaging Period ^(b)	Modeled Concentration (µg/m ³)	UTM Easting (m)	UTM Northing (m)	Rank ^(a)	Standard ^{(a)(c)(d)} (µg/m ³)
ЦS	MAAC	24-hour	14.83	511,348.28	3,856,641.25	1st High	140
H ₂ 5	EPA Action Level	30-minute	67.00	511,298.99	3,856,643.04	1-hour 1st High	837
MMM	MAAC	24-hour	9.40	510,115.55	3,856,041.31	1st High	10
MIMIM	EPA Action Level	30-minute	47.99	510,209.41	3,856,039.95	1-hour 1st High	57,000
TDC	MAAC	24-hour	70.67	511,249.70	3,856,644.83	1st High	140
TKS	EPA Action Level	30-minute	385.32	510,143.86	3,855,999.18	1-hour 1st High	837

(a) https://scdhec.gov/sites/default/files/media/document/BAQ_SC%20Modeling%20Guidelines_10.15.18_revised%204.15.19.pdf.

(b) 30-minute averaging period to be compared against maximum 1-hour modeled concentration, per DHEC October 6, 2021 request.

(c) TRS does not have a SC Standard - compare to H_2S .

(d) Methyl Mercaptan does not have an established AEGL-1 value due to insufficient data. Comparison of modeled concentrations are to the 30-minute AEGL-2 value for MMC only.